Share to:

 

Absolutbelopp

Graf över absolutvärdesfunktionen för reella tal
Ett tals absolutvärde kan tolkas som talets avstånd till origo

Absolutbeloppet, ibland kallat absolutvärdet eller beloppet av ett tal x betecknas |x| och är ett positivt reellt tal eller noll och kan ges den geometriska tolkningen som ett tals avstånd till origo eller 0-punkten i det fall talet kan representeras på tallinjen.[1][2]

Absolutbeloppet av ett reellt tal x definieras av[2]

Absolutbeloppet av ett komplext tal z = a + bi definieras av[1]

(se kvadratrot och komplexkonjugat.)

För en vektor v = (x1, x2,..., xn), kallas ibland vektorns längd för vektorns absolutbelopp eller belopp:

Den vanliga benämningen är dock vektorns norm och betecknas .[3]

Egenskaper

Om a och b är komplexa tal gäller att[1]

  1. (triangelolikheten)
  2. (omvända triangelolikheten)
  3. , där a* är det komplexkonjugerade värdet av a

Om a och b är reella gäller även[2]

Anledningen till att man använder begreppet norm för vektorer är att multiplikationsregeln gäller ett reellt tal och en vektor : [3]

Exempel

Se även

Referenser

Noter

  1. ^ [a b c] Karush 1962, s. 7.
  2. ^ [a b c] Karush 1962, s. 8.
  3. ^ [a b] Karush 1962, s. 219-220.

Källor

  • Karush, William; Jan Thomson och Bertil Rahm (1962). Matematisk uppslagsbok. Wahlström & Widstrand 

Externa länkar

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya