รูปหลายเหลี่ยมในทางเรขาคณิต รูปหลายเหลี่ยม (อังกฤษ: polygon) ตามความหมายดั้งเดิม หมายถึงรูปร่างอย่างหนึ่งที่เป็นรูปปิดหรือรูปครบวงจรบนระนาบ ซึ่งประกอบขึ้นจากลำดับของส่วนของเส้นตรงที่มีจำนวนจำกัด ส่วนของเส้นตรงเหล่านั้นเรียกว่า ขอบ หรือ ด้าน และจุดที่ขอบสองข้างบรรจบกันเรียกว่า จุดยอด หรือ เหลี่ยม (corner) ภายในรูปหลายเหลี่ยมบางครั้งก็เรียกว่า เนื้อที่ (body) รูปหลายเหลี่ยมเป็นวัตถุในสองมิติ ซึ่งเป็นตัวอย่างหนึ่งของพอลิโทป (polytope) ที่อยู่ใน n มิติ ด้านสองด้านที่บรรจบกันเป็นเหลี่ยม เป็นสิ่งที่จำเป็นสำหรับการเกิดมุมที่ไม่เป็นมุมตรง (180°) ถ้าไม่เช่นนั้นแล้ว ส่วนของเส้นตรงทั้งสองจะถูกพิจารณาว่าเป็นด้านเดียวกันเชกเช่นวงกลม มีหลายเหลี่ยมไม่สิ้นสุดตามจำนวนองศา ความคิดทางเรขาคณิตพื้นฐานได้ถูกดัดแปลงไปในหลากหลายทาง เพื่อที่จะทำให้เข้ากับจุดประสงค์เฉพาะ ตัวอย่างเช่นในสาขาวิชาคอมพิวเตอร์กราฟิกส์ คำว่า รูปหลายเหลี่ยม ถูกนำไปใช้และมีการเปลี่ยนแปลงความหมายไปโดยเล็กน้อย ซึ่งเกี่ยวข้องกับวิธีการบันทึกและจัดการรูปร่างภายในคอมพิวเตอร์มากขึ้น การจัดแบ่งประเภทแบ่งตามจำนวนด้านโดยหลักแล้วรูปหลายเหลี่ยมสามารถจัดแบ่งได้โดยจำนวนด้านที่มี ดูได้จากการตั้งชื่อรูปหลายเหลี่ยมด้านล่าง ภาวะนูนเว้ารูปหลายเหลี่ยมอาจแบ่งได้ตามองศาของภาวะนูนเว้า
แบ่งตามความสมมาตร
อื่น ๆ
สมบัติสมมติว่ารูปหลายเหลี่ยมที่กำลังจะกล่าวถึงต่อไปนี้ เป็นรูปในเรขาคณิตแบบยุคลิดโดยตลอด มุมรูปหลายเหลี่ยมใด ๆ ไม่ว่าจะปรกติหรือไม่ ตัดตัวเองหรือไม่ จะมีจำนวนเหลี่ยมเท่ากับจำนวนจุดยอด แต่ละเหลี่ยมก็มีมุมอยู่หลายมุม แต่มุมที่สำคัญที่สุดสองชนิดได้แก่
มุมภายนอกเป็นมุมประกอบสองมุมฉาก (supplementary angles) ของมุมภายใน สิ่งนี้ก็ยังเป็นจริงถ้าหากมุมภายในมีขนาดมากกว่า 180° เพราะมุมภายนอกจะมีขนาดเป็นลบ นั่นคือ สมมติให้การเลี้ยวตามเข็มนาฬิกาเป็นบวก และอาจมีบางครั้งที่จะต้องเลี้ยวซ้ายแทนเลี้ยวขวา ซึ่งจะทำให้มุมของการเลี้ยวเป็นปริมาณติดลบ พื้นที่และเซนทรอยด์พื้นที่ของรูปหลายเหลี่ยมคือเมเชอร์ในบริเวณสองมิติที่ปิดล้อมโดยเส้นขอบของรูปหลายเหลี่ยม สำหรับรูปหลายเหลี่ยมเชิงเดียว (ที่ไม่ตัดตัวเอง) ที่มีจุดยอด n จุด พื้นที่และเซนทรอยด์ของรูปนี้สามารถหาได้จาก [3] เพื่อที่จะทำให้รูปหลายเหลี่ยมเป็นรูปปิด จุดยอดแรกและจุดยอดสุดท้ายจะต้องเป็นจุดเดียวกัน นั่นคือ จุดยอดจะต้องเรียงลำดับกันไปตามเข็มหรือทวนเข็มนาฬิกา ถ้าหากเรียงตามเข็มนาฬิกา พื้นที่จะเป็นจำนวนลบแต่ก็แก้ไขได้ด้วยค่าสัมบูรณ์ สูตรนี้มักจะเรียกกันว่า Surveyor's Formula สูตรดังกล่าวได้อธิบายไว้โดยไมชเตอร์ (Meister) เมื่อ พ.ศ. 2312 และโดยเกาส์ (Guass) เมื่อ พ.ศ. 2338 ซึ่งสามารถพิสูจน์ได้โดยการแบ่งรูปหลายเหลี่ยมออกเป็นรูปสามเหลี่ยมหลาย ๆ รูป หรืออาจจะมองได้ว่าเป็นกรณีพิเศษของทฤษฎีบทของกรีน (Green's theorem) เราสามารถคำนวณพื้นที่ A ของรูปหลายเหลี่ยมเชิงเดียว ถ้าเราทราบความยาวของด้าน และมุมภายนอก โดยใช้สูตรดังนี้ ซึ่งอธิบายไว้โดย Lopshits เมื่อ พ.ศ. 2506 [4] ถ้าหากรูปหลายเหลี่ยมถูกวาดขึ้นบนกริดหรือช่องตารางที่มีระยะเท่ากัน ซึ่งในกรณีดังกล่าวจุดยอดจะอยู่บนจุดตัดของกริด ทฤษฎีบทของพิก (Pick's theorem) ได้ให้สูตรอย่างง่ายสำหรับคำนวณพื้นที่ของรูปหลายเหลี่ยม โดยคิดจากจำนวนจุดตัดของกริดที่อยู่ภายในและบนเส้นขอบของรูป ถ้ารูปหลายเหลี่ยมเชิงเดียวสองรูปมีพื้นที่เท่ากันแล้ว รูปที่หนึ่งจะสามารถตัดแบ่งออกเป็นรูปหลายเหลี่ยมชิ้นเล็ก ๆ ซึ่งสามารถประกอบใหม่ให้เป็นรูปที่สองได้ ดังที่กล่าวไว้ในทฤษฎีบทโบลไย-แกร์วีน (Bolyai-Gerwien theorem) รูปหลายเหลี่ยมตัดตัวเองพื้นที่ของรูปหลายเหลี่ยมตัดตัวเองสามารถนิยามด้วยสองแนวทางที่แตกต่างกัน ซึ่งแต่ละแนวทางก็ให้ผลลัพธ์ต่างกันด้วย
องศาเสรีรูป n เหลี่ยมมีองศาเสรี (degree of freedom) เท่ากับ 2n ซึ่งรวมทั้ง 2 สำหรับตำแหน่ง 1 สำหรับแนวการหมุน และ 1 สำหรับขนาดทุกขนาด ดังนั้นรูปร่างทั่วไปจะมีองศาเสรีเท่ากับ 2n − 4 ในกรณีของสมมาตรการสะท้อน จำนวนหลังจะลดลงเหลือ n − 2 กำหนดให้ k ≥ 2 สำหรับรูป nk เหลี่ยมที่มีสมมาตรแบบหมุน k ทบ () รูปนี้จะมีองศาเสรีเท่ากับ 2n − 2 ถ้ารวมสมมาตรการสะท้อน () เข้าไปอีก จะเท่ากับ n − 1 การวางนัยทั่วไปโดยความรู้สึกทั่วไป รูปหลายเหลี่ยมหมายถึงลำดับหรือวงจรที่สลับไปมาโดยไม่สิ้นสุดระหว่างส่วนของเส้นตรง (ด้าน) กับมุม (เหลี่ยม) เหตุผลที่ว่ารูปหลายเหลี่ยมไม่สิ้นสุดก็เพราะลำดับโครงสร้างนั้นวนรอบกลับมาหาจุดเดิมตลอดเวลา ในขณะที่รูปอนันต์เหลี่ยม (apeirogon) ไม่มีขอบเขต เพราะลำดับโครงสร้างของมันเดินทางต่อไปเรื่อย ๆ โดยไม่มีจุดปลาย การทำความเข้าใจในคณิตศาสตร์สมัยใหม่ ได้อธิบายลำดับโครงสร้างนี้ว่าเป็นรูปหลายเหลี่ยมแบบ "นามธรรม" ซึ่งเป็นเซตอันดับบางส่วนของสมาชิก เนื้อที่ภายในของรูปหลายเหลี่ยมก็คือสมาชิกอันหนึ่ง พอลิโทปว่าง (null polytope) ก็เป็นสมาชิกอันหนึ่งเช่นเดียวกัน (ด้วยเหตุผลทางเทคนิค) รูปหลายเหลี่ยมทางเรขาคณิตจึงทำให้เข้าใจว่า เป็นการทำรูปหลายเหลี่ยมนามธรรมให้เป็น "รูปธรรม" ซึ่งสิ่งนี้เกี่ยวข้องกับการจับคู่ของสมาชิกจากนามธรรมไปยังเรขาคณิต รูปหลายเหลี่ยมเช่นนี้จึงไม่จำเป็นว่าจะต้องวางอยู่บนระนาบ หรือมีด้านที่ตรง หรือเป็นพื้นที่ที่ถูกล้อมรอบ และสมาชิกที่ต่างกันก็อาจซ้อนเกยกันหรือแม้แต่ทับกันจนสนิท ตัวอย่างเช่น รูปหลายเหลี่ยมที่ถูกวาดขึ้นบนพื้นผิวของทรงกลม ซึ่งด้านของมันเป็นส่วนโค้งของเส้นวงกลมใหญ่ ดังนั้นเมื่อเราพูดถึงเรื่องรูปหลายเหลี่ยม เราจะต้องอธิบายอย่างระมัดระวังว่าเรากำลังพูดถึงชนิดใดอยู่ รูปสองเหลี่ยม เป็นรูปหลายเหลี่ยมปิดที่มีสองด้านและสองมุม เราสามารถกำหนดจุดสองจุดที่อยู่ตรงข้ามกันบนทรงกลม (คล้ายขั้วเหนือกับขั้วใต้) เชื่อมถึงกันด้วยครึ่งหนึ่งของเส้นวงกลมใหญ่ และเพิ่มอีกเส้นหนึ่งด้วยมุมที่ต่างกันก็จะได้รูปสองเหลี่ยม การเติมเต็มพื้นผิวทรงกลมด้วยรูปสองเหลี่ยมจะทำให้เกิดทรงหลายหน้าที่เรียกว่า hosohedron แต่ถ้าหากเดินทางรอบเส้นวงกลมใหญ่จนครบรอบ ซึ่งจะเหลือจุดยอดเพียงจุดเดียวและมีด้านเดียว กลายเป็นรูปหนึ่งเหลี่ยม ถึงแม้ว่าผู้แต่งตำราหลายท่านจะไม่ถือว่ากรณีเช่นนี้เป็นรูปหลายเหลี่ยมที่สมบูรณ์ การวางนัยแบบอื่นของรูปหลายเหลี่ยมเหล่านี้สามารถเกิดขึ้นได้บนพื้นผิวอื่น ๆ แต่ในระนาบแบบยุคลิดที่ราบแบน เนื้อที่ของรูปหลายเหลี่ยมไม่สามารถเกิดขึ้นเป็นรูปธรรมได้โดยสามัญสำนึก เราจึงเรียกกรณีเช่นนี้ว่าเป็นภาวะลดรูป (degenerate) เนื่องจากแนวความคิดที่ใช้ในการวางนัยทั่วไปของรูปหลายเหลี่ยมมีหลากหลายทาง ตัวอย่างต่อไปนี้จะเป็นกรณีลดรูป (หรือกรณีพิเศษ) บางส่วนของรูปหลายเหลี่ยม
การตั้งชื่อรูปหลายเหลี่ยมปกติแล้วในภาษาไทย รูปหลายเหลี่ยมจะมีกี่ด้านกี่มุม ก็เรียกชื่อไปตามนั้นโดยตรงเช่น รูปที่มีห้าด้านห้ามุม ก็เรียกรูปห้าเหลี่ยม แต่ในภาษาอังกฤษซึ่งเป็นภาษาสากลจะมีหลักการตั้งชื่อที่ต่างออกไป คำว่า polygon ในภาษาอังกฤษมีที่มาภาษากรีก แล้วถ่ายทอดไปยังภาษาละตินดังนี้
ซึ่งแปลว่า หลายมุม ดังนั้นการตั้งชื่อจะใช้การประสมคำอุปสรรคเชิงตัวเลขในภาษากรีกเป็นหลัก แล้วตามด้วยคำปัจจัย "-gon" เช่น pentagon หมายถึงรูปห้าเหลี่ยม แต่สำหรับจำนวนขนาดใหญ่ นักคณิตศาสตร์ก็มักเขียนเป็นตัวเลขแทนเช่น 257-gon และในรูปของพจน์ทั่วไปก็เขียนเป็น n-gon ซึ่งมีประโยชน์ในการอ้างถึงตัวแปร n ที่อยู่ในสูตร รูปหลายเหลี่ยมพิเศษบางรูปมีชื่อของมันเอง ตัวอย่างเช่น รูปห้าเหลี่ยมดาวปรกติ (regular star pentagon) มันก็คือ รูปดาวห้าแฉก (pentagram) เป็นต้น
สำหรับการตั้งชื่อรูปหลายเหลี่ยมที่มีด้านอยู่ระหว่าง 20-100 ด้าน จะใช้การประสมของคำอุปสรรคดังนี้
อย่างไรก็ตาม คำว่า "-kai-" ก็ไม่ได้มีการใช้ทุกครั้ง (ดังเช่นในตารางข้างบน) ตัวอย่างเช่น รูป 42 เหลี่ยม เรียกว่า tetracontakaidigon หรือ tetracontadigon ในขณะที่รูป 50 เหลี่ยม เรียกว่า pentacontagon ประวัติรูปหลายเหลี่ยมเป็นที่รู้จักมาตั้งแต่สมัยโบราณ ชาวกรีกโบราณรู้จักรูปหลายเหลี่ยมปรกติซึ่งอธิบายไว้โดยนักคณิตศาสตร์หลายท่าน รูปดาวห้าแฉก ซึ่งเป็นรูปหลายเหลี่ยมปรกติไม่นูน (รูปดาวหลายแฉก) ปรากฏเป็นครั้งแรกบนแจกันของ Aristophonus ในเมือง Caere ซึ่งระบุว่าสร้างขึ้นในศตวรรษที่ 7 ก่อนคริสตกาล สำหรับรูปหลายเหลี่ยมไม่นูน ยังไม่มีการศึกษาอย่างเป็นระบบจนกระทั่งคริสต์ศตวรรษที่ 14 โดย Thomas Bredwardine ในปี ค.ศ. 1952 Shephard ได้ขยายแนวความคิดของรูปหลายเหลี่ยมไปบนระนาบจำนวนเชิงซ้อน ที่ซึ่งมิติส่วนจริงแต่ละส่วนประกอบกับมิติส่วนจินตภาพ เพื่อสร้างรูปหลายเหลี่ยมเชิงซ้อน
รูปหลายเหลี่ยมในธรรมชาติรูปหลายเหลี่ยมจำนวนมากสามารถพบได้ในธรรมชาติ ในโลกของธรณีวิทยา ผลึกของแร่ธาตุต่าง ๆ จะมีผิวหน้าหรือหน้าตัดที่เป็นรูปหลายเหลี่ยม โครงสร้างผลึกแบบ quasicrystal ก็สามารถมีหน้าเป็นรูปห้าเหลี่ยมปรกติได้ หรืออีกตัวอย่างหนึ่งคือ เมื่อหินหลอมเหลวเย็นตัวลงในพื้นที่ที่ถูกจำกัดอย่างแน่นหนา จะกลายเป็นหินบะซอลต์แท่งหกเหลี่ยม ดังเช่นที่ Giant's Causeway ในไอร์แลนด์ หรือที่ Devil's Postpile ที่รัฐแคลิฟอร์เนีย รูปหลายเหลี่ยมก็พบได้ในอาณาจักรสัตว์ เช่นรังผึ้งแต่ละช่องเป็นรูปหกเหลี่ยม ใช้สำหรับการเก็บน้ำผึ้งและเกสรดอกไม้ และเป็นสถานที่เจริญเติบโตของตัวอ่อน นอกจากนี้ก็ยังมีสัตว์ที่มีลักษณะใกล้เคียงกับรูปหลายเหลี่ยมปรกติ หรืออย่างน้อยก็มีความสมมาตรเหมือน ๆ กัน สัตว์ในไฟลัมเอไคโนดอร์มาทา เช่นดาวทะเลจะมีลักษณะเป็นรูปห้าเหลี่ยมหรือรูปดาวห้าแฉก หรือพบได้ยากกว่าคือรูปเจ็ดเหลี่ยม ส่วนพวกเม่นทะเลบางครั้งก็ปรากฏความสมมาตรให้เห็น ถึงแม้ว่าสัตว์ในไฟลัมเอไคโนดอร์มาทาไม่ได้มีพฤติกรรมที่สมมาตรตามรัศมีเหมือนพวกแมงกะพรุน ความสมมาตรตามรัศมี (หรือความสมมาตรแบบอื่น) ก็สามารถสังเกตได้จากอาณาจักรพืช โดยเฉพาะดอกไม้ เมล็ด และผลไม้ รูปแบบทั่วไปมักจะสมมาตรแบบห้าเหลี่ยม ซึ่งเห็นได้ชัดจากมะเฟือง ผลไม้ที่มีรสเปรี้ยวน้อยในเอเชียตะวันออกเฉียงใต้ เมื่อผ่าตามขวางจะได้รูปดาวห้าแฉก ชาวคณิตศาสตร์สมัยก่อนที่ทำการคำนวณโดยใช้กฎแรงโน้มถ่วงของนิวตัน ได้ค้นพบว่าถ้าหากเทหวัตถุสองชนิด (เช่นดวงอาทิตย์กับโลก) โคจรรอบกันแล้ว จะมีจุดจุดหนึ่งที่แน่นอนในอวกาศ ที่ซึ่งเทหวัตถุขนาดเล็ก (อย่างเช่นดาวเคราะห์น้อยหรือสถานีอวกาศ) สามารถคงอยู่ในแนวโคจรที่เสถียร จุดนี้เรียกว่าจุดลากรานจ์ (Lagrangian points) ระหว่างดวงอาทิตย์กับโลกนั้นมีจุดลากรานจ์จำนวน 5 จุด ซึ่งมี 2 จุดในแนวโคจรของโลกที่ทำมุม 60 องศากับดวงอาทิตย์และโลกพอดี นั่นคือเมื่อเชื่อมจุดศูนย์กลางของดวงอาทิตย์ โลก และจุดหนึ่งในสองจุดนั้น จะได้เป็นรูปสามเหลี่ยมด้านเท่า นักดาราศาสตร์ได้ค้นพบแล้วว่ามีดาวเคราะห์น้อยจำนวนหนึ่งอยู่ที่จุดเหล่านี้ แต่การทำให้สถานีอวกาศรักษาตำแหน่งอยู่ที่จุดลากรานจ์ในทางปฏิบัติยังเป็นข้อถกเถียงกันอยู่ ด้วยเหตุผลที่ว่า ถึงแม้ว่ามันจะไม่จำเป็นที่จะต้องปรับแต่งเส้นทาง มันก็อาจจะชนเข้ากับดาวเคราะห์น้อยที่มีอยู่ ณ ตำแหน่งนั้นโดยบ่อยครั้ง แต่ปัจจุบันนี้ก็มีดาวเทียมและเครื่องสังเกตการณ์อวกาศโคจรอยู่บนจุดลากรานจ์อื่นที่เสถียรน้อยกว่า อ้างอิง
บรรณานุกรม
|