หม้อแปลงไฟฟ้า
หม้อแปลง หรือ หม้อแปลงไฟฟ้า (อังกฤษ: transformer)เป็นอุปกรณ์ไฟฟ้า ที่ใช้ในการส่งผ่านพลังงานจากวงจรไฟฟ้าหนึ่งไปยังอีกวงจรโดยอาศัยหลักการของแม่เหล็กไฟฟ้า โดยปกติจะใช้เชื่อมโยงระหว่างระบบไฟฟ้าแรงสูง และไฟฟ้าแรงต่ำ หม้อแปลงเป็นอุปกรณ์หลักในระบบส่งกำลังไฟฟ้า หม้อแปลงไฟฟ้าเป็นอุปกรณ์ที่ใช้สำหรับส่งผ่านพลังงานไฟฟ้า สามารถเปลี่ยนขนาดแรงดันไฟฟ้า หรือขนาดของกระแสไฟฟ้าได้ ซึ่งขึ้นอยู่กับการออกแบบและใช้งาน โครงสร้างหม้อแปลงแบ่งออกตามการใช้งานของระบบไฟฟ้ากำลังได้ 2 แบบคือ หม้อแปลงไฟฟ้าชนิด 1 เฟส และหม้อแปลงไฟฟ้าชนิด 3 เฟสแต่ละชนิดมีโครงสร้างสำคัญประกอบด้วย
วัสดุที่ใช้ทำขดลวดหม้อแปลงโดยทั่วไปทำมาจากสายทองแดงเคลือบน้ำยาฉนวน มีขนาดและลักษณะลวดเป็นทรงกลมหรือแบนขึ้นอยู่กับขนาดของหม้อแปลง ลวดเส้นโตจะมีความสามารถในการจ่ายกระแสได้มากกว่าลวดเส้นเล็ก หม้อแปลงขนาดใหญ่มักใช้ลวดถักแบบตีเกลียวเพื่อเพิ่มพื้นที่สายตัวนำให้มีทางเดินของกระแสไฟมากขึ้น สายตัวนำที่ใช้พันขดลวดบนแกนเหล็กทั้งขดลวดปฐมภูมิและขดลวดทุติยภูมิอาจมีแทปแยก (Tap) เพื่อแบ่งขนาดแรงเคลื่อนไฟฟ้า (ในหม้อแปลงขนาดใหญ่จะใช้การเปลี่ยนแทปด้วยสวิตช์อัตโนมัติ) ฉนวนสายทองแดงจะต้องผ่านการเคลือบน้ำยาฉนวน เพื่อป้องกันไม่ให้ขดลวดลัดวงจรถึงกันได้ การพันขดลวดบนแกนเหล็กจึงควรมีกระดาษอาบน้ำยาฉนวนคั่นระหว่างชั้นของขดลวดและคั่นแยกระหว่างขดลวดปฐมภูมิกับทุติยภูมิด้วย ในหม้อแปลงขนาดใหญ่มักใช้กระดาษอาบน้ำยาฉนวนพันรอบสายตัวนำก่อนพันเป็นขดลวดลงบนแกนเหล็ก นอกจากนี้ยังใช้น้ำมันชนิดที่เป็นฉนวนและระบายความร้อนให้กับขดลวดอีกด้วย แกนเหล็กแผ่นเหล็กที่ใช้ทำหม้อแปลงจะมีส่วนผสมของสารกึ่งตัวนำ-ซิลิกอนเพื่อรักษาความหนาแน่นของเส้นแรงแม่เหล็กที่เกิดขึ้นรอบขดลวดไว้ แผ่นเหล็กแต่ละชั้นเป็นแผ่นเหล็กบางเรียงต่อกันหลายชิ้นทำให้มีความต้านทานสูงและช่วยลดการสูญเสียบนแกนเหล็กที่ส่งผลให้เกิดความร้อนหรือที่เรียกว่ากระแสไหลวนบนแกนเหล็กโดยทำแผ่นเหล็กให้เป็นแผ่นบางหลายแผ่นเรียงซ้อนประกอบขึ้นเป็นแกนเหล็กของหม้อแปลง ซึ่งมีด้วยกันหลายรูปแบบเช่น แผ่นเหล็กแบบ Core และแบบ Shell ขั้วต่อสายไฟโดยทั่วไปหม้อแปลงขนาดเล็กจะใช้ขั้วต่อไฟฟ้าต่อเข้าระหว่างปลายขดลวดกับสายไฟฟ้าภายนอก และ ถ้าเป็นหม้อแปลงขนาดใหญ่จะใช้แผ่นทองแดง (Bus Bar) และบุชชิ่งกระเบื้องเคลือบ (Ceramic) ต่อเข้าระหว่างปลายขดลวดกับสายไฟฟ้าภายนอก แผ่นป้ายแผ่นป้ายจะติดไว้ที่ตัวถังของหม้อแปลงเพื่อแสดงรายละเอียดประจำตัวหม้อแปลง อาจเริ่มจากชื่อบริษัทผู้ผลิต ชนิด รุ่นและขนาดของหม้อแปลง ขนาดกำลังไฟฟ้า แรงเคลื่อนไฟฟ้าด้านรับไฟฟ้าและด้านจ่ายไฟฟ้า ความถี่ใช้งาน วงจรขดลวด ลักษณะการต่อใช้งาน ข้อควรระวัง อุณหภูมิ มาตรฐานการทดสอบ และอื่น ๆ หลักการทำงานกฎของฟาราเดย์ (Faraday’s Law) กล่าวไว้ว่า เมื่อขดลวดได้รับแรงเคลื่อนไฟฟ้ากระแสสลับ จะทำให้ขดลวดมีการเปลี่ยนแปลงเส้นแรงแม่เหล็กตามขนาดของรูปคลื่นไฟฟ้ากระแสสลับ และทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นที่ขดลวดนี้ คำอธิบาย : เมื่อขดลวดปฐมภูมิได้รับแรงเคลื่อนไฟฟ้ากระแสสลับ จะทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นตามกฎของฟาราเดย์ ขนาดของแรงเคลื่อนไฟฟ้าเหนี่ยวนำนี้ขึ้นอยู่กับ จำนวนรอบของขดลวด พื้นที่แกนเหล็ก และความหนาแน่นของเส้นแรงแม่เหล็กที่มีการเปลี่ยนแปลงจากไฟฟ้ากระแสสลับ เมื่อกระแสไฟฟ้าไหลผ่านขดลวดจะทำให้มีเส้นแรงแม่เหล็กในขดลวด เส้นแรงแม่เหล็กนี้เปลี่ยนแปลงตามขนาดของรูปคลื่นไฟฟ้าที่ได้รับ เส้นแรงแม่เหล็กเกือบทั้งหมดจะอยู่รอบแกนเหล็ก เมื่อมีการเปลี่ยนแปลงของเส้นแรงแม่เหล็กผ่านขดลวด จะทำให้มีแรงเคลื่อนไฟฟ้าเหนี่ยวนำเกิดขึ้นที่ขดลวดทุติยภูมินี้ ข้อกำหนดทางไฟฟ้าสำหรับหม้อแปลงไฟฟ้า
ประเภทของหม้อแปลงหม้อแปลงอาจแบ่งได้หลายวิธี เช่น แบ่งตามพิกัดกำลัง ระดับแรงดันไฟฟ้า หรือ จุดประสงค์การใช้งาน สำหรับในประเทศไทย อาจจะแบ่งหยาบๆ ได้ดังนี้ ชนิดของหม้อแปลงไฟฟ้าการจำแนกหม้อแปลงตามขนาดกำลังไฟฟ้ามีดังนี้
นอกจากนี้หม้อแปลงยังสามารถจำแนกชนิดตามจำนวนรอบของขดลวดได้ดังนี้
เท่ากันทั้งสองด้าน
การหาขั้วหม้อแปลงไฟฟ้าขั้วของหม้อแปลงมีความสำคัญเพื่อจะนำหม้อแปลงมาต่อใช้งานได้อย่างถูกต้อง การหาขั้วหม้อแปลงมีหลักการทดสอบโดยการต่อขดลวดปฐมภูมิและทุติยภูมิอนุกรมกันซึ่งจะทำให้เกิดแรงเคลื่อนไฟฟ้าขั้วเสริมกัน (Additive Polarity) หรือขั้วหักล้างกัน (Subtractive Polarity) ถ้าขั้วเสริมกันเครื่องวัดจะอ่านค่าได้มากกว่าแรงเคลื่อนไฟฟ้าที่จ่ายให้กับหม้อแปลง แต่ถ้าขั้วหักล้างกันเครื่องวัดจะอ่านค่าได้น้อยกว่าแรงเคลื่อนไฟฟ้าที่จ่ายให้กับหม้อแปลง การหาขั้วหม้อแปลงมีความสัมพันธ์ระหว่างขั้วแรงเคลื่อนไฟฟ้าด้านสูงและแรงเคลื่อนไฟฟ้าด้านต่ำ เมื่อเราจ่ายแรงเคลื่อนไฟฟ้าให้กับขั้ว H1 และ H2 ส่วนขดลวดที่เหลือคือขั้ว X1 และ X2 สิ่งที่ควรรู้ในการทดสอบคือ อัตราส่วนของแรงเคลื่อนไฟฟ้าระหว่างปฐมภูมิกับทุติยภูมิและเพื่อความปลอดภัยไม่ควรจ่ายแรงเคลื่อนไฟฟ้าทดสอบเกินกว่าขนาดของขดลวดแรงเคลื่อนไฟต่ำ ตัวอย่างเช่น หม้อแปลง 480 / 120จะมีอัตราส่วนของแรงเคลื่อนไฟฟ้าระหว่างปฐมภูมิกับทุติยภูมิเท่ากับ4ดังนั้นหากจ่ายแรงเคลื่อนไฟฟ้า120Vให้กับขดลวดปฐมภูมิจะทำให้มีแรงเคลื่อนไฟฟ้าด้านทุติยภูมิ 120 / 4 เท่ากับ 30 V ซึ่งจะไม่ทำให้มีแรงเคลื่อนไฟสูงเกิดขึ้นในระหว่างการทดสอบ |