เซตกำลัง
ในวิชาคณิตศาสตร์ เซตกำลัง หรือ เพาเวอร์เซต (อังกฤษ: power set) ของเซต S ใดๆ เขียนแสดงด้วยสัญลักษณ์ , P(S), ℙ(S), ℘(S) หรือ 2S เป็นเซตของเซตย่อยทั้งหมดของ S รวมทั้งเซตว่าง และเซต S เอง ตามหลักทฤษฎีเซตเชิงสัจพจน์ (เช่นสัจพจน์ ZFC) สัจพจน์แห่งเซตกำลังรองรับการมีอยู่ของเซตกำลังสำหรับเซตใดๆ [1] เซตย่อยใดๆ ของ เรียกว่า ครอบครัวของเซต บน S ตัวอย่างถ้า S เป็นเซต {x, y, z} แล้วเซตย่อยของ S ได้แก่:
ดังนั้นเซตกำลังของ S คือ {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}} [2] สมบัติถ้า เป็นเซตจำกัดที่มีสมาชิก ตัว แล้วจำนวนของเซตย่อยของ คือ ทำให้เกิดสัญกรณ์ สามารถพิสูจน์ได้ดังนี้
การอ้างเหตุผลแนวทแยงของคันทอร์ แสดงว่าเซตกำลังของเซต (ทั้งเซตจำกัดและเซตอนันต์) มี ภาวะเชิงการนับ มากกว่าเซตนั้นๆ เสมอ (กล่าวคือเซตกำลังของเซตใดๆ ต้องใหญ่กว่าเซตนั้นๆ) โดยเฉพาะอย่างยิ่งทฤษฎีบทของคันทอร์แสดงว่าเซตกำลังของเซตอนันต์นับได้เป็นเซตอนันต์นับไม่ได้ ตัวอย่าง เช่น เซตกำลังของเซตของจำนวนธรรมชาติมีความสัมพันธ์หนึ่งต่อหนึ่งทั่วถึงกับเซตของจำนวนจริง (ดูหน้า cardinality of the continuum) เซตกำลังของเซต S และการดำเนินการหายูเนียน อินเตอร์เซกชัน และ ส่วนเติมเต็ม สามารถมองเป็นตัวอย่างต้นแบบของพีชคณิตแบบบูล ที่จริงแล้วยังสามารถแสดงว่าพีชคณิตแบบบูลขนาดจำกัดใดๆ เป็นสมสัณฐานกับพีชคณิตแบบบูลของเซตกำลังของเซตจำกัดบางเซต สำหรับพีชคณิตแบบบูลขนาดอนันต์ ข้อความนี้ไม่เป็นจริง แต่พีชคณิตแบบบูลขนาดอนันต์ทุกโครงสร้างสามารถแทนด้วยโครงสร้างพีชคณิตย่อย ของเซตกำลังของพีชคณิตแบบบูล (ดูหน้า Stone's representation theorem) เซตกำลังของเซต S ก่อให้เกิด อาบีเลียนกรุป เมื่อพิจารณาด้วยการดำเนินการหาผลต่างสมมาตร (โดยมีเซตว่างเป็นสมาชิกเอกลักษณ์และแต่ละเซตเป็นตัวผกผันกับเซตนั้นๆ) เซตกำลังของเซต S ยังก่อให้เกิดโมนอยด์สลับที่ เมื่อพิจารณาด้วยการดำเนินการหาอินเตอร์เซกชัน การพิสูจน์กฎการแจกแจงสามารถแสดงว่าเซตกำลังกับการดำเนินการทั้งสองนี้สร้างริงแบบบูล แสดงเซตย่อยในรูปฟังก์ชันในวิชาทฤษฎีเซต XY เป็นเซตของฟังก์ชันทั้งหมดจาก Y ไป X เพราะว่า "2" อาจนิยามเป็น {0,1} (ดูหน้า จำนวนธรรมชาติ) ดังนั้น 2S (นั่นคือ {0,1}S) เป็นเซตของฟังก์ชันทั้งหมดจาก S ไปยัง {0,1} เมื่อจำแนกฟังก์ชันตัวใดตัวหนึ่งใน 2S กับบุพภาพที่สอดคล้องกันของฟังก์ชันนั้น จะเห็นว่ามีความสัมพันธ์หนึ่งต่อหนึ่งทั่วถึงระหว่าง 2S กับ โดยแต่ละฟังก์ชันเป็นฟังก์ชันบ่งชี้ของเซตย่อยที่เป็นสมาชิกของ กับสิ่งที่ฟังก์ชันบ่งชี้บ่งชี้ ฉะนั้น 2S และ ถือว่าเท่ากันทุกประการเชิงทฤษฎีเซตได้ (ดังนั้นจึงมีมูลเหตุสำหรับการเขียนแทนเซตกำลังด้วย 2S สองประการ ได้แก่ การเขียนสับเซตแทนด้วยฟังก์ชันเป็นกรณีพิเศษของสัญกรณ์ XY และสมบัติของเซตกำลังข้างต้นว่า |2S| = 2|S|) สัญกรณ์สามารถประยุกต์ใช้กับตัวอย่างข้างต้นที่ เพื่อให้เห็นสมสัณฐานกับจำนวนฐานสองตั้งแต่ 0 จนถึง 2n−1 โดย n เป็นจำนวนสมาชิกของเซต 1 ในตำแหน่งที่สอดคล้องกันกับตำแหน่งสมาชิกที่ปรากฏใน S บ่งชี้ถึงการมีสมาชิกตัวนั้นๆ ดังนั้น {x, y} = 110 สำหรับเซตกำลังทั้งหมดของ S จะได้
ความสัมพันธ์กับทฤษฎีบททวินามเซตกำลังมีความสัมพันธ์กับทฤษฎีบททวินาม จำนวนของเซตที่มีสมาชิก ตัวในเซตกำลังของเซตที่มีสมาชิก ตัวจะเท่ากับการจัดหมู่ เรียกอีกชื่อว่าสัมประสิทธิ์ทวินาม ตัวอย่าง เซตกำลังของเซตขนาด 3 มี:
อ้างอิงรายชื่อหนังสืออ้างอิง
|