Sinüs (matematik)
Matematikte sinüs, trigonometrik bir fonksiyon. Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Orijinden noktaya çizilen bir doğrunun y ekseniyle yaptığı açı kullanılarak ya da aynı açıya sahip bir dik üçgende, bu açının karşısındaki kenarın hipotenüse bölümüyle hesaplanır. Sinüs fonksiyonu çoğunlukla ışık, ses, harmonik osilatörlerin konumu ve hızı, güneş ışığı yoğunluğu, gündüz uzunluğu ve yıl içindeki ortalama sıcaklık değişimleri gibi periyodik olayları modellemek için kullanılır. Sinüs fonksiyonunun tarihi Gupta dönemi Hint astronomisinde kullanılan jyā ve koṭi-jyā fonksiyonlarına kadar uzanır. Sinüs fonksiyonu Sanskritçe'den Arapçaya, daha sonra Arapçadan Latince'ye çevrilmiştir.[1] Dik üçgen tanımıBir dar açı olan α'nın sinüsünü tanımlamak için α açısını içeren bir dik üçgen düşünün. Yandaki görselde  açısı ilgili açı olmak üzere ABC üçgeninin üç kenarını şu şekilde isimlendirebiliriz:
Böyle bir üçgende açının sinüsü karşı kenarın hipotenüsü bölümü ile bulunur, veya: Diğer trigonometrik fonksiyonlar da benzer şekilde tanımlanabilir; Mesela, bir açının kosinüsü komşu kenar ile hipotenüsün oranıdır, bununla beraber tanjant karşı kenar ile komşu kenarın oranınıdır. Birim çember tanımıTrigonometride birim çember, yarıçapı bir olan ve Kartezyen koordinat sisteminde merkezi orijin'de (0, 0) olan çemberdir. Orijinden geçen ve x ekseninin pozitif yarımıyla θ açısı yapan bir çizginin birim çember ile kesişimi bir nokta verir. Bu kesişim noktasının x ve y koordinatları sırasıyla cos(θ) ve sin(θ)'e eşittir. Dik üçgen tanımının aksine birim çember tanımındaki açı bütün gerçek sayılar olabilir.
ÖzdeşliklerBunlar 'nın tüm değerleri için geçerlidir. Çarpmaya göre tersiSinüs fonksiyonunun çarpmaya göre tersi kosekanttır. Başka bir deyişle sin(A)'nın çarpmaya göre tersi csc(A) veya cosec(A)'dır. Bir dik üçgende, hipotenüs'ün karşı dik kenara oranına kosekant denir: Ters fonksiyonuSinüs fonksiyonunun tersi arcsinüstür. y = arcsin(x) fonksiyonu sin(y) = x olarak ifade edilebilir. sin(y) = x'i ifade eden birçok y sayısı vardır. Örneğin sin(0) = 0, aynı zamanda sin(π) = 0, sin(2π) = 0 vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, aynı zamanda arcsin(0) = π, arcsin(0) = 2π vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır. Bu kısıtlama ile, tanım kümesindeki her bir x için arcsin(x) ifadesi yalnızca tek bir değere karşılık gelir, bu da asıl değer olarak adlandırılır. Bu özellikler tüm ters trigonometrik fonksiyonlarlarda uygulanır. k ∈ : Tek bir denklemde:
ve KalkülüsSinüs fonksiyonu için: Türevi: C entegrasyon sabitini temsil ediyor. Yazılımdaki uygulamalarıDiğer trigonometrik fonksiyonlarla beraber sinüs fonksiyonu birçok programlama dillerinde ve platformlarında mevcuttur. Bilgi işlemde genel olarak Intel x87 FPU'ların 80387 ve daha sonraki jenerasyonlarında olduğu gibi bazı CPU mimarileri sinüs için hazır talimatlar içerir. Proglamlama dillerinde Örneğin, C standart kütüphanesinde sinüs fonksiyonları math.h dosyasında tanımlıdır: Benzer olarak, Python dilinde de sinüs fonksiyonu ( Sinüs hesaplamak için standart bir algoritma yoktur. kayan nokta hesaplamaları için kullanılan en yaygın standart IEEE 754-2008 sinüs gibi trigonometrik fonksiyonların hesaplanması hakkında bilgi vermemektedir.[2] Sinüs hesaplamak için kullanılan algoritmalar hız, kesinlik, taşınabilirlik veya veri girişi aralığı gibi sınırlamalar için dengelenebilir. Bu, farklı algoritmaların farklı sonuçlar vermesine yol açabilir, özellikle çok büyük veri girişi (Örneğin: Özellikle 3 boyutlu bilgisayar grafiklerinde kullanılan yaygın bir optimizasyon tekniği sinüs değerlerinin bir tablosunu önceden hesaplamaktır, örnepin her derece için bir değer. Bu yöntem her seferinde değeri hesaplamak yerine u tablodan bakıp kullanmayı sağlar. CORDIC algoritması bilimsel hesap makinelerinde yaygın olarak kullanılmaktadır. Tur tabanlı uygulamalarıBazı yazılım kütüphaneleri veri giriş açısını yarım tur (180 derece) veya radyan olarak almaktadır. Açıyı yarım turla veya turla ifade etmek bazen kesinliklik ve verimlilik avantajları sağlayabilir.[3] [4]
Ayrıca bakınızKaynakça
|