Багатоканальна астрономія (англ.multi-messenger astronomy) — астрономія, заснована на скоординованому спостереженні та інтерпретації сигналів, реєструємих в різних каналах, таких як електромагнітне випромінювання, гравітаційні хвилі, нейтрино та космічні промені. Вони породжуються різними астрофізичними процесами, і тому розкривають різну інформацію про їхні джерела.
Мережа обсерваторій астрофізичних мультимесенджерів (AMON)[11], створена в 2013 році[12], є ширшим і амбітнішим проектом, спрямованим на полегшення обміну попередніми спостереженнями та заохочення пошуку «підпорогових» подій, які не помітні для будь-який окремий інструмент. Він базується в Університеті штату Пенсільванія.
1987: Наднова SN 1987A випромінювала нейтрино, які були зареєстровані в нейтринних обсерваторіях Kamiokande-II, IMB і Baksan, за кілька годин до того, як світло наднової було виявлено оптичними телескопами.
Серпень 2017: Злиття нейтронних зір у галактиці NGC 4993 спричинило гравітаційну хвилю GW170817, яку спостерігали детектори LIGO/Virgo. Через 1,7 секунди його спостерігали як гамма-спалах GRB 170817A космічними гамма-телескопами Fermi та INTEGRAL, а його оптичний аналог SSS17a було виявлено через 11 годин в обсерваторії Лас-Кампанас, а потім космічним телескопом Габбла та Dark Energy Survey. Ультрафіолетові спостереження Swift, рентгенівські спостереження Чандра та радіоспостереження на Дуже великому масиві доповнили виявлення. Це була перша подія гравітаційної хвилі, яка спостерігалася з електромагнітним аналогом, тим самим знаменуючи значний прорив в багатоканальній астрономії[14]. Неспостереження нейтрино було пояснено тим, що струмені були сильно відхилені від осі[15]. У жовтні 2020 року астрономи повідомили про триваюче рентгенівське випромінювання від GW170817/GRB 170817A/SSS17a[16].
Вересень 2017 (оголошення — липень 2018): 22 вересня IceCube[17] зареєстрував нейтрино надзвичайно високої енергії[18] (близько 290 ТеВ) IceCube-170922A[19] і надіслав сповіщення з координатами можливого джерела. Виявлення гамма-променів з енергією понад 100 МеВ на Fermi-LAT[20] та між 100—400 ГеВ на MAGIC[21] від блазараTXS 0506+056 (повідомлено 28 вересня та 4 жовтня відповідно) узгоджувалось за розташуванням з сигналом нейтрино[22]. Сигнали можна пояснити тим, що протони надвисокої енергії прискорюються в струменях блазарів, утворюючи нейтральні піони (які розпадаються на гамма-промені) і заряджені піони (які розпадаються на нейтрино)[23]. Це перший випадок, коли детектор нейтрино був використаний для визначення місцезнаходження об'єкта в космосі та ідентифікації джерела космічних променів[22][24][25][26][27].
Жовтень 2019 (оголошення — лютий 2021): 1 жовтня на IceCube було виявлено нейтрино високої енергії, і подальші вимірювання у видимому світлі, ультрафіолетовому випромінюванні, рентгенівських променях і радіохвилях визначили подію приливного руйнуванняAT2019dsg як можливе джерело[9].
Листопад 2019 (оголошення — червень 2022): друге нейтрино високої енергії, виявлене IceCube, пов'язане з подією приливного руйнування AT2019fdr[28].
↑De Angelis, Alessandro; Pimenta, Mario (2018). Introduction to particle and astroparticle physics (multimessenger astronomy and its particle physics foundations). Springer. doi:10.1007/978-3-319-78181-5. ISBN978-3-319-78181-5.
↑Wright, Katherine (2023). Milky Way Viewed through Neutrinos. Physics. Physics 16, 115 (29 June 2023). 16: 115. doi:10.1103/Physics.16.115. Процитовано 1 липня 2023. Kurahashi Neilson first came up with the idea to use cascade neutrinos to map the Milky Way in 2015.