Нейтрон
Нейтро́н — елементарна частинка, яка входить до складу ядра. Загальна характеристикаНейтрон — електрично нейтральна частинка, що входить до групи частинок під назвою баріони, котрі в свою чергу входять до складу групи адронів. Електрична нейтральність нейтрона зумовлюється тим, що заряд u-кварка, який входить до складу нейтрона, компенсується зарядами двох d-кварків. У нейтрона є античастинка, яка називається антинейтроном. Маса нейтрона приблизно дорівнює масі протона 1,6749543•10−27 кг = 1838,5 мас електрона. Це тільки на ~2,5 електронних мас перевищує масу протона. З нейтронів і протонів складаються ядра атомів, в яких нейтрон стабільний. У вільному стані нейтрон нестабільний і радіоактивний. Середній період існування 12,5 хв. Перетворюється на протон+електрон+антинейтрино. Внаслідок відсутності заряду має велику проникність, оскільки під час руху в речовині нейтрон не витрачає енергії на іонізацію, випромінювання тощо. Нейтрони використовуються в активаційному аналізі, нейтронній радіографії, нейтронному гамма-каротажі, нейтронографії та інших методах досліджень. ВластивостіНа нейтрон, як і на інші адрони, діють всі чотири фундаментальні фізичні сили: Нейтрон не має електричного заряду, але взаємодіє з електромагнітним полем завдяки своєму магнітному моменту. Магнітний момент нейтрона дорівнює −1,9130427 0,0000005 ядерних магнетонів. Розпад вільних нейтронівСтабільний нейтрон лише в складі ядра. У вільному стані розпадається з періодом напіврозпаду 886 с. Основна реакція розпаду:
Стабільність нейтрона в складі ядра пояснюється тим, що його перетворення на протон призвело б до значного збільшення енергії кулонівської взаємодії всередині ядра, а цю енергію ядру нізвідки взяти. Енергія нейтронівУ залежності від енергії виділяють швидкі нейтрони, теплові нейтрони й ультрахолодні нейтрони. Історія відкриттяНейтрон відкрив у 1932 році Джеймс Чедвік. У 1935 році він отримав за це відкриття Нобелівську премію. Експерименти, які засвідчували виникнення випромінювання з великою глибиною проникнення в речовину, проводилися й раніше, але це випромінювання намагалися інтерпретувати, як народження гамма-квантів. Чедвіку належить заслуга доказу, що нове випромінювання належить частинці з масою, приблизно рівною масі протона. Спочатку вважалося, що нейтрон є зв'язаним станом протона й електрона, а ядро атома складається із протонів та електронів, але точніші вимірювання маси частинки показали, що вона більша за сумарну масу протона й електрона, що неможливо при зв'язуванні. Розпад нейтрона на протон і електрон, при якому зайву енергію забирає нейтрино, підтверджує цей висновок. Існували й інші складнощі протонно-електронної моделі. Вона не могла пояснити ціле значення спіну ядра Нітрогену в молекулі азоту, а також відсутність електронного внеску в надтонку структуру. Крім того, електрон надто легка частинка, щоб її можна було локалізувати в об'ємі ядра. Першими довели, що ядро не може складатися з електронів та протонів Амбарцумян Віктор Амазаспович та Дмитро Іваненко[1][2], а з середини 1930-их утвердилася протон-нейтронна модель ядра. Антинейтрон відкрив у 1956 році Брюс Корк[en]. Джерела нейтронівНейтрони утворюються у великій кількості в ядерних реакторах під час поділу ядра 235U. Поділ відбувається при захопленні нейтрона ядром, але як наслідок утворюється кілька вільних нейтронів. Цей процес називають розмноженням нейтронів. Взаємодія з речовиноюОскільки нейтрони не мають електричного заряду, а магнітна взаємодія слабка, то швидкі нейтрони можуть проникати в речовину на значну глибину. Єдиним типом взаємодії є пряме зіткнення з ядрами речовини, імовірність якого невисока з огляду на малі розміри ядер. Енергія, яку нейтрон втрачає при зіткненні, передаючи його ядру, з яким зіткнувся, залежить від співвідношення мас нейтрона й ядра і тим більша, чим ближчі між собою ці маси. Тому нейтрони краще гальмуються речовинами, в яких багато водню: водою, вуглеводами тощо. Саме речовини із малими масами ядер використовуються для сповільнення нейтронів у ядерних реакторах. У камерах Вільсона чи бульбашкових камерах нейтрон не залишає треку, проте вибите із атома заряджене ядро залишає трек, тож можна прослідкувати, у якій точці відбулося зіткнення. Деякі ядра атомів поглинають нейтрони. При поглинанні спочатку один ізотоп хімічного елементу перетворюється в інший, але такі ізотопи часто нестабільні. Наприклад, при поглинанні нейтрона ізотопом урана 235U, новий ізотоп розпадається. ЗастосуванняМетод розсіювання нейтронів[en] широко використовується для вивчення властивостей кристалічних тіл — фононних спектрів, кристалічного поля тощо. У напівпровідниковій технології застосовується нейтронна імплантація домішок. Див. також
Примітки
Джерела
|