Natural numbers example
- (0) 1 2 3 4 5 6 7 8 9 10
- 11 12 13 14 15 16 17 18 19 20
- 21 22 23 24 25 26 27 28 29 30
- 31 32 33 34 35 36 37 38 39 40
- 41 42 43 44 45 46 47 48 49 50
- 51 52 53 54 55 56 57 58 59 60
- 61 62 63 64 65 66 67 68 69 70
- 71 72 73 74 75 76 77 78 79 80
- 81 82 83 84 85 86 87 88 89 90
- 91 92 93 94 95 96 97 98 99
- 100 200 300 400 500
- 600 700 800 900
- 1000 2000 3000 4000 5000
- 6000 7000 8000 9000
- 10,000 100,000 1,000,000
- 1,000,000,000 1,000,000,000,000
Numbers less than 0 (such as −1) are not natural numbers.
|
Amanani a-natural, asoloko ebizwa ngokuba ngamanani okubala, nganmanani asetyenziselwa ukubala izinto. Maxa wambi inani elilodwa elingu-zero kuthiwa nalo linanieli-natural. Maxa wambi u-inye ubizwa ngokuba lelona nani li-natural lakhe lalincinane. Amanani a-natural asoloko engamanani a-pheleleyo azii-(integers) kwaye akasokuze abe ngaphantsi kuka-zero.
Akukho nani li-natural likhe libe lelona likhulu kunamanye. Inanani eli-natural elinokulandela lingafumaneka kuphela ngokuthi kongezwe u-1 kwelo nani li-natural nelikhoyo ngaloo mzuzu, kutsho kwenzeke amanani ayakuqhubeka evela "umphelo". Akukho nani lingathi li-natural liphinde libe-infinite. Naliphi na inani eli-natural lingafumaneka ngokongeza u-1 kwinani eli-natural nekulelona lakhe lalincinane.
ipanslavism
Amanani angekho natural
Ezi ntlobo zamanani zilandelayo akungomanani a-natural:
- Amanani angaphantsi ko-0 (amanani a-negative), umzekelo, −2 −1
- ii-Fractions, umzekelo, ½ 3¼
- ii-Decimals, umzekelo, 7.675
- amanani a-Irrational, umzekelo, , (pi)
- amanani a-Imaginary, umzekelo, (i)
- i-infinity, umzekelo,
Basic operations
- Ukudibanisa/ukongeza; Isiphumo somdibaniso wamanani amabini a-natural siba linani eli- natural.
- Multiplication": Isiphumo sophinda-phindo lwamanani amabini a-natural siba linani eli-natural.
- Ulandelelwaniso: lwamanani amabini a-natural, ukuba akafani, ngoko ke elinye likhulu kunelinye, lize elinye libe lincinane. m = n or m > n or m < n
- Ukuba u- l > m ke u-l + n > m + n aze yena u-l x n > l x m
- U-Zero lelona nani lincinane kuwo onke amanani a-natural: 0 = n or 0 < n
- Kumanani a-natural akukho nani likhulu ukodlula amanye amanani n < n + 1
- "Ukuthabatha okanye ukuphungula": ukuba u-n mncinane kuno-m then u-m minus n linani eli-natural. Ukuba If n < m then m - n = p.
- Ukuba u-l - m = n then l = n + m
- ukuba u-n mkhulu kuno-m, then u-m minus n akulonani li-natural
- Ukuba u-i = m - n no-p < n then l > m - p
- Ukwahlula-hlula: Ukuba then
- I-Mathematical induction: ukuba ezi zinto zimbini ziyinyaniso yayo nayiphi na i-property P yamanani a-natural, then u-P uyinyaniso yalo lonke inani eli-natural
Amanani a-natural ngokukodwa
- Ii-Even numbers: Ukuba u-n = m x 2, then u-n uyi-even number
- Ii-even numbers ngoo-0, 2, 4, 6, njalo najlo. U-Zero uyeyona even number incinane (yokuqala).
- Ii-Odd numbers: Ukuba u-n = m x 2 +1, then u-n uyi-odd number
- Inani lisenokuba even okanye libe-odd kodwa alinakubanazo zombini ezi mpawu.
- Ii-odd numbers ngoo-1, 3, 5, 7,njalo njalo.
- Ii-Composite numbers: Ukuba u-n = m x l, no-m kunye no-l abango-0 okanye 1, then u-n uyi-composite number.
- Ii-composite numbers ngoo-4, 6, 8, 9, 10, 12, 14, 15,16,18,21 njalo njalo.
- Ii-Prime numbers: ukuba inani alingo-0, 1, libe lingeyo-composite number, then liyi-prime number
- Ii-prime numbers ngoo-2, 3, 5, 7, 11, 13, 17, njalo njalo. Isibini silelona nani lincinane (okanye lokuqala) le-prime number. Isibini kukuphela kwenani eliyi-even prime number.
- Akukho prime number yongamele ezinye ngobukhulu.
- Ii-Square numbers: ukuba u-n = m x m, then u-n usi-square. u-n usi-square sika-m.
- Izi-squares ngoo-0, 1, 4, 9, 16, 25,36,49 and so on.
|