瑞利商
在数学中,瑞利商(英語:Rayleigh quotient)定义为:[1][2]
式中,为复埃尔米特矩阵,为非零向量。对实矩阵和向量,对矩阵的埃尔米特矩阵要求退化为对称矩阵,对向量的共轭转置退化为转置。 对所有非零标量成立。 埃尔米特矩阵(或实对称矩阵)只具有实特征值且可对角化,由此,对于给定矩阵,其瑞利商达到最小值λ(的最小特征值)当为(最小特征值对应的特征向量);类似的:,。[2] 瑞利商使用最小最大定理(min-max theorem)获得所有特征值的精确值。它还用于特征值算法(如瑞利商迭代),从特征向量近似值中获得特征值近似值。 在量子力学中,瑞利商给出了状态为的系统中算子观测值的期望值。 埃尔米特矩阵M的界对于任意向量,其瑞利商满足,其中分别代表矩阵的最小特征值和最大特征值。观察定义可知,矩阵的瑞利商等价于其特征值的加权和:其中是第个归一化后的特征值-特征向量对,是在特征基中的第个坐标。可以验证,当为矩阵最小(最大)特征值对应的特征向量()时,取值达到其下(上)界。 参考文献
Information related to 瑞利商 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve