在数学 和物理学 中,空间群(space group) 是空间中(通常是三维空间)一种形态的空间对称群 。在三维空间中有219种不同的类型,或230种不同的手性 类型。对超过三维的空间中的空间群也有研究,它们有时被称作比贝尔巴赫 群 ,并且是离散的紧群 ,具有欧氏空间的等距同构 。它是由俄国结晶学家费多洛夫和德国结晶学家薛弗利斯(Artur Moritz Schoenflies,1853-1928)于1890至1891年间各自独立地先后推导得出来的。
在晶体学 中,空间群也被称为费奥多罗夫 群 ,是对晶体对称型 的一种描述。三维空间群的权威参考文献是《国际晶体学表》。空间群可以分为两类:一类称为简单空间群或称点空间群;一类称为复杂空间群或称非点空间群。其中73种为简单空间群,余下的157种为复杂空间群。
三维的空间群
#
晶系 (空间群数量) 布拉维晶格
点群
空间群 (国际短符号)
國際標記法
熊夫利標記法 [ 1]
軌形
考克斯特符號
點群階
1
三斜晶系 (2)
1
C1
11
[ ]+
1
P1
2
1
Ci
1×
[2+ ,2+ ]
2
P1
3–5
单斜晶系 (13)
2
C2
22
[2]+
2
P2, P21 C2
6–9
m
Cs
*11
[ ]
2
Pm, Pc Cm, Cc
10–15
2/m
C2h
2*
[2,2+ ]
4
P2/m, P21 /m C2/m, P2/c, P21 /c C2/c
16–24
正交晶系 (59)
222
D2
222
[2,2]+
4
P222, P2221 , P21 21 2, P21 21 21 , C2221 , C222, F222, I222, I21 21 21
25–46
mm2
C2v
*22
[2]
4
Pmm2, Pmc21 , Pcc2, Pma2, Pca21 , Pnc2, Pmn21 , Pba2, Pna21 , Pnn2 Cmm2, Cmc21 , Ccc2, Amm2, Aem2, Ama2, Aea2 Fmm2, Fdd2 Imm2, Iba2, Ima2
47–74
mmm
D2h
*222
[2,2]
8
Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce Fmmm, Fddd Immm, Ibam, Ibca, Imma
75–80
四方晶系 (68)
4
C4
44
[4]+
4
P4, P41 , P42 , P43 , I4, I41
81–82
4
S4
2×
[2+ ,4+ ]
4
P4 , I4
83–88
4/m
C4h
4*
[2,4+ ]
8
P4/m, P42 /m, P4/n, P42 /n I4/m, I41 /a
89–98
422
D4
224
[2,4]+
8
P422, P421 2, P41 22, P41 21 2, P42 22, P42 21 2, P43 22, P43 21 2 I422, I41 22
99–110
4mm
C4v
*44
[4]
8
P4mm, P4bm, P42 cm, P42 nm, P4cc, P4nc, P42 mc, P42 bc I4mm, I4cm, I41 md, I41 cd
111–122
4 2m
D2d
2*2
[2+ ,4]
8
P4 2m, P4 2c, P4 21 m, P4 21 c, P4 m2, P4 c2, P4 b2, P4 n2 I4 m2, I4 c2, I4 2m, I4 2d
123–142
4/mmm
D4h
*224
[2,4]
16
P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42 /mmc, P42 /mcm, P42 /nbc, P42 /nnm, P42 /mbc, P42 /mnm, P42 /nmc, P42 /ncm I4/mmm, I4/mcm, I41 /amd, I41 /acd
143–146
三方晶系 (25)
3
C3
33
[3]+
3
P3, P31 , P32 R3
147–148
3
S6
3×
[2+ ,6+ ]
6
P3 , R3
149–155
32
D3
223
[2,3]+
6
P312, P321, P31 12, P31 21, P32 12, P32 21 R32
156–161
3m
C3v
*33
[3]
6
P3m1, P31m, P3c1, P31c R3m, R3c
162–167
3 m
D3d
2*3
[2+ ,6]
12
P3 1m, P3 1c, P3 m1, P3 c1 R3 m, R3 c
168–173
六方晶系 (27)
6
C6
66
[6]+
6
P6, P61 , P65 , P62 , P64 , P63
174
6
C3h
3*
[2,3+ ]
6
P6
175–176
6/m
C6h
6*
[2,6+ ]
12
P6/m, P63 /m
177–182
622
D6
226
[2,6]+
12
P622, P61 22, P65 22, P62 22, P64 22, P63 22
183–186
6mm
C6v
*66
[6]
12
P6mm, P6cc, P63 cm, P63 mc
187–190
6 m2
D3h
*223
[2,3]
12
P6 m2, P6 c2, P6 2m, P6 2c
191–194
6/mmm
D6h
*226
[2,6]
24
P6/mmm, P6/mcc, P63 /mcm, P63 /mmc
195–199
立方晶系 (36)
23
T
332
[3,3]+
12
P23, F23, I23 P21 3, I21 3
200–206
m3
Th
3*2
[3+ ,4]
24
Pm3 , Pn3 , Fm3 , Fd3 , Im3 , Pa3 , Ia3
207–214
432
O
432
[3,4]+
24
P432, P42 32 F432, F41 32 I432 P43 32, P41 32, I41 32
215–220
4 3m
Td
*332
[3,3]
24
P4 3m, F4 3m, I4 3m P4 3n, F4 3c, I4 3d
221–230
m3 m
Oh
*432
[3,4]
48
Pm3 m, Pn3 n, Pm3 n, Pn3 m Fm3 m, Fm3 c, Fd3 m, Fd3 c Im3 m, Ia3 d
注: e 面是双滑移面,是在两个不同方向的滑移,存在于七个正交群,五个四方群和五个立方群中,都具有含有中心的晶格,官方的符号为e
参考资料
Barlow, W, Über die geometrischen Eigenschaften starrer Strukturen und ihre Anwendung auf Kristalle, Z. Kristallogr., 1894, 23 : 1–63
Bieberbach, Ludwig, Über die Bewegungsgruppen der Euklidischen Räume, Mathematische Annalen , 1911, 70 (3): 297–336, ISSN 0025-5831 , doi:10.1007/BF01564500
Bieberbach, Ludwig, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Mathematische Annalen , 1912, 72 (3): 400–412, ISSN 0025-5831 , doi:10.1007/BF01456724
Brown, Harold; Bülow, Rolf; Neubüser, Joachim; Wondratschek, Hans; Zassenhaus, Hans , Crystallographic groups of four-dimensional space, New York: Wiley-Interscience [John Wiley & Sons], 1978, ISBN 978-0-471-03095-9 , MR 0484179
Burckhardt, Johann Jakob, Die Bewegungsgruppen der Kristallographie, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften 13 , Verlag Birkhäuser, Basel, 1947, MR 0020553
Burckhardt, Johann Jakob, Zur Geschichte der Entdeckung der 230 Raumgruppen, Archive for History of Exact Sciences , 1967, 4 (3): 235–246, ISSN 0003-9519 , doi:10.1007/BF00412962 , MR 0220837
Conway, John Horton ; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P. , On three-dimensional space groups , Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 2001, 42 (2): 475–507 [2013-03-04 ] , ISSN 0138-4821 , MR 1865535 , (原始内容 存档于2021-04-18)
Fedorov, E. S., Symmetry of Regular Systems of Figures, Zap. Mineral. Obch., 1891, 28 (2): 1–146
Fedorov, E. S., Symmetry of crystals, ACA Monograph 7 , American Crystallographic Association, 1971
Hahn, Th., Hahn, Theo , 编, International Tables for Crystallography, Volume A: Space Group Symmetry A 5th, Berlin, New York: Springer-Verlag , 2002 [2013-03-04 ] , ISBN 978-0-7923-6590-7 , doi:10.1107/97809553602060000100 , (原始内容 存档于2021-04-28)
Hall, S.R., Space-Group Notation with an Explicit Origin, Acta Cryst., 1981, A37 : 517–525
Janssen, T.; Birman, J.L.; Dénoyer, F.; Koptsik, V.A.; Verger-Gaugry, J.L.; Weigel, D.; Yamamoto, A.; Abrahams, S.C.; Kopsky, V., Report of a Subcommittee on the Nomenclature of n -Dimensional Crystallography. II. Symbols for arithmetic crystal classes, Bravais classes and space groups, Acta Cryst. A, 2002, 58 (Pt 6): 605–621, doi:10.1107/S010876730201379X
Kim, Shoon K., Group theoretical methods and applications to molecules and crystals, Cambridge University Press , 1999, ISBN 978-0-521-64062-6 , MR 1713786
Litvin, D.B., Tables of crystallographic properties of magnetic space groups, Acta Cryst. A, May 2008, 64 (Pt 3): 419–24, Bibcode:2008AcCrA..64..419L , PMID 18421131 , doi:10.1107/S010876730800768X
Litvin, D.B., Tables of properties of magnetic subperiodic groups, Acta Cryst. A, May 2005, 61 (Pt 3): 382–5, Bibcode:2005AcCrA..61..382L , PMID 15846043 , doi:10.1107/S010876730500406X
Neubüser, J.; Souvignier, B.; Wondratschek, H., Corrections to Crystallographic Groups of Four-Dimensional Space by Brown et al. (1978) [New York: Wiley and Sons], Acta Cryst. A, 2002, 58 (Pt 3): 301, doi:10.1107/S0108767302001368
Opgenorth, J; Plesken, W; Schulz, T, Crystallographic Algorithms and Tables, Acta Cryst. A, 1998, 54 (Pt 5): 517–531, doi:10.1107/S010876739701547X
Plesken, Wilhelm; Hanrath, W, The lattices of six-dimensional space, Math. Comp., 1984, 43 (168): 573–587
Plesken, Wilhelm; Schulz, Tilman, Counting crystallographic groups in low dimensions , Experimental Mathematics, 2000, 9 (3): 407–411 [2013-03-04 ] , ISSN 1058-6458 , MR 1795312 , (原始内容 存档于2021-04-18)
Schönflies, Arthur Moritz, Theorie der Kristallstruktur, Gebr. Bornträger, Berlin., 1891
Souvignier, Bernd, The four-dimensional magnetic point and space groups, Z. Kristallogr., 2006, 221 : 77–82
Vinberg, E., Crystallographic group , Hazewinkel, Michiel (编), 数学百科全书 , Springer , 2001, ISBN 978-1-55608-010-4
Zassenhaus, Hans , Über einen Algorithmus zur Bestimmung der Raumgruppen , Commentarii Mathematici Helvetici, 1948, 21 : 117–141 [2013-03-04 ] , ISSN 0010-2571 , doi:10.1007/BF02568029 , MR 0024424 , (原始内容 存档于2012-11-28)
外部链接
^ 又名向夫立符號