電子設計自動化电子设计自动化(英語:Electronic design automation,縮寫:EDA)是指利用计算机辅助设计(CAD)软件,来完成超大规模集成电路(VLSI)芯片[來源請求]的功能设计、综合、验证、物理设计(包括布局、布线、版图、设计规则检查等)等流程的设计方式。 历史与发展在电子设计自动化出现之前,设计人员必须手工完成集成电路的设计、布线等工作,这是因为当时所谓集成电路的复杂程度远不及现在。工业界开始使用几何学方法来制造用于电路光绘(photoplotter)的胶带。[來源請求] 到了1970年代中期,开发人员尝试将整个设计过程自动化,而不仅仅满足于自动完成掩膜草图。第一个电路布局、布线工具研发成功。设计自动化研討會(Design Automation Conference)在这一时期被创立,旨在促进电子设计自动化的发展。[1] 电子设计自动化发展的下一个重要阶段以卡弗尔·米德(Carver Mead)和琳·康維于1980年发表的论文《超大规模集成电路系统导论》(Introduction to VLSI Systems)为标志。这一篇具有重大意义的论文提出了通过编程语言来进行芯片设计的新思想。[2]如果这一想法得到实现,芯片设计的复杂程度可以得到显著提升。这主要得益于用来进行集成电路逻辑仿真、功能验证的工具的性能得到相当的改善。随着计算机仿真技术的发展,设计项目可以在构建实际硬件电路之前进行仿真,芯片布局、布线对人工设计的要求降低,而且软件错误率不断降低。直至今日,尽管所用的语言和工具仍然不断在发展,但是通过编程语言来设计、验证电路预期行为,利用工具软件综合得到低抽象级(或称“后端”)物理设计的这种途径,仍然是数字集成电路设计的基础。 从1981年开始,电子设计自动化逐渐开始商业化。1984年的设计自动化会议(Design Automation Conference)上还举办了第一个以电子设计自动化为主题的销售展览。Gateway设计自动化在1986年推出了一种硬件描述语言Verilog,这种语言在现在是最流行的高级抽象设计语言。[3][4]1987年,在美国国防部的资助下,另一种硬件描述语言VHDL被创造出来。现代的电子设计自动化设计工具可以识别、读取不同类型的硬件描述。[5]根据这些语言规范产生的各种仿真系统迅速被推出,使得设计人员可对设计的芯片进行直接仿真。后来,技术的发展更侧重于逻辑综合。 进入21世纪之后,一方面,三家大EDA公司(Synopsys、Cadence、Mentor)通过多次并购整合,完善设计全流程,奠定了三巨头竞争格局。另一方面,EDA公司开始深入制造领域,发展出了OPC等制造EDA的工具以及可制造性设计(DFM)工具。同时,晶圆厂成为了EDA的深度用户,不仅在制造方面需要使用EDA工具,在标准单元库、SRAM设计上都需要使用。此外,领先晶圆厂每两年开发一代工艺,其中EDA的整套设计流程需要在新工艺上验证。EDA也开始在早期工艺研发中介入,帮助解决更复杂的设计规则以及种种难题。晶圆厂提供的Signoff签核流程决定了设计公司设计出的芯片能否在晶圆制造厂顺利生产。而Signoff签核的主要工具就是EDA,可以说EDA是架起了设计与制造沟通的桥梁。同时,先进工艺不断迭代也驱动了EDA的创新。可见,此时此刻EDA在产业链已经有着举足轻重的作用。[6] 目前的数字集成电路的设计都比较模块化(参见集成电路设计、设计收敛(Design closure)和设计流(Design flow (EDA))。半导体器件制造工艺需要标准化的设计描述,高抽象级的描述将被编译为信息单元(cell)的形式。设计人员在进行逻辑设计时尚无需考虑信息单元的具体硬件工艺。利用特定的集成电路制造工艺来实现硬件电路,信息单元就会实施预定义的逻辑或其他电子功能。半导体硬件厂商大多会为它们制造的元件提供“元件库”,并提供相应的标准化仿真模型。相比数字的电子设计自动化工具,模拟系统的电子设计自动化工具大多并非模块化的,这是因为模拟电路的功能更加复杂,而且不同部分的相互影响较强,而且作用规律复杂,电子元件大多没有那么理想。Verilog AMS就是一种用于模拟电子设计的硬件描述语言。[7]此外,设计人员可以使用硬件验证语言来完成项目的验证工作目前最新的发展趋势是将集描述语言、验证语言集成为一体,典型的例子有SystemVerilog。[8][9] 随着集成电路规模的扩大、半导体技术的发展,EDA的重要性急剧增加。这些工具的使用者包括半导体器件制造中心的硬件技术人员,他们的工作是操作半导体器件制造设备并管理整个工作车间。一些以设计为主要业务的公司,也会使用电子设计自动化软件来评估制造部门是否能够适应新的设计任务。电子设计自动化工具还被用来将设计的功能导入到类似现场可编程逻辑门阵列的半定制可程式邏輯裝置,或者生产全定制的特殊應用積體電路。 現況現今數位電路非常模組化(參見集成电路设计、设计收敛、設計流程 (EDA)),產線最前端將設計流程標準化,把設計流程區分為許多「細胞」(cells),而暫不考慮技術,接著細胞則以特定的集成電路技術實現邏輯或其他電子功能。製造商通常會提供組件庫(libraries of components),以及符合標準模擬工具的模擬模型給生產流程。類比EDA工具較不模組化,因為它需要更多的功能,零件間需要更多的互動,而零件一般說較不理想。 在電子產業中,由於半導體產業的規模日益擴大,EDA扮演越來越重要的角色。使用這項技術的廠商多是從事半导体器件制造的代工製造商,以及使用EDA模擬軟體以評估生產情況的設計服務公司。EDA工具也應用在现场可编程逻辑门阵列的程序設計上。 如今的集成电路,从系统架构开始,落实到功能的定义和实现,最终实现整个芯片的版图设计与验证,是一项复杂的系统工程,集成了人类智慧的最高成果。以华为2020年最新的7nm麒麟990芯片来说,其中集成了103亿颗晶体管,若没有EDA輔助,设计这样复杂的电路并保证良率是无法想象的。可见EDA這套工具,赋能了集成电路设计与制造的创新,当之无愧的站在了产业链的顶端。[6] 未来发展趋势目前,EDA在国际市场上已经发展成为了相对成熟的产业,而每年增长率只有10%左右。[6]但有业内人士分析认为,这并不代表日后发展的机会在变小,在未来 EDA 的发展趋势可能有:[6]
另一方面,由於美國對華科技禁令的影響,中國將逐漸放棄自美國引進全套EDA服務,加上開發方向的轉變,產業發展轉而投向中國自研EDA的高成長市場[10],為了保住中國的利潤,美國幾大EDA公司甚至展開了竞争,為此大舉投資中國EDA新勢力並設立各自的合作據點。[11]科技產業的變化,也帶動起步中的中國EDA品牌的往新的大方向前進,並隨著技術落實而逐漸獲利後,EDA為美國壟斷的格局將會出現變化。[12] 重點軟體分類設計
仿真
分析及驗證
製造製備
参见参考文献
|