Bilangan riil negatifDalam matematika, bilangan negatif melambangkan kebalikannya.[1] Dalam sistem bilangan riil, bilangan negatif adalah bilangan yang kurang dari nol . Angka negatif sering digunakan untuk mewakili besarnya kerugian atau kekurangan. Hutang yang terhutang mungkin dianggap sebagai aset negatif. Jika suatu besaran, seperti muatan elektron, dapat mempunyai salah satu dari dua pengertian yang berlawanan, maka seseorang dapat memilih untuk membedakan antara pengertian tersebut—mungkin secara acak—sebagai positif dan negatif . Angka negatif digunakan untuk menggambarkan nilai pada skala di bawah nol, seperti skala Celsius dan Fahrenheit untuk suhu. Hukum aritmatika untuk bilangan negatif memastikan bahwa gagasan yang masuk akal tentang kebalikannya tercermin dalam aritmatika. Misalnya, - (−3) = 3 karena kebalikan dari kebalikannya adalah nilai aslinya. Bilangan negatif biasanya ditulis dengan tanda minus di depannya. Misalnya, −3 menyatakan besaran negatif dengan besaran tiga, dan diucapkan "minus tiga" atau "tiga negatif". Untuk membantu membedakan antara operasi pengurangan dan bilangan negatif, terkadang tanda negatif ditempatkan sedikit lebih tinggi daripada tanda minus (sebagai superskrip ). Sebaliknya, bilangan yang lebih besar dari nol disebut positif ; nol biasanya ( tetapi tidak selalu ) dianggap tidak positif atau negatif .[2] Kepositifan suatu angka dapat ditekankan dengan memberi tanda tambah di depannya, misalnya +3. Secara umum, negatif atau positif suatu bilangan disebut sebagai tandanya . Setiap bilangan nyata selain nol adalah positif atau negatif. Bilangan bulat non-negatif disebut bilangan asli (yaitu 0, 1, 2, 3...), sedangkan bilangan bulat positif dan negatif (bersama dengan nol) disebut bilangan bulat . (Beberapa definisi bilangan asli tidak menyertakan nol.) Dalam pembukuan, jumlah terutang sering kali dilambangkan dengan angka merah, atau angka dalam tanda kurung, sebagai notasi alternatif untuk menyatakan angka negatif. Bilangan negatif digunakan dalam Sembilan Bab tentang Seni Matematika, yang dalam bentuknya yang sekarang berasal dari periode Dinasti Han Tiongkok (202 SM – 220 M), tetapi mungkin berisi materi yang jauh lebih tua. [3] Liu Hui (c. abad ke-3) menetapkan aturan untuk menjumlahkan dan mengurangkan bilangan negatif. [4] Pada abad ke-7, matematikawan India seperti Brahmagupta menjelaskan penggunaan bilangan negatif. Matematikawan Islam mengembangkan lebih lanjut aturan pengurangan dan perkalian bilangan negatif dan memecahkan masalah dengan koefisien negatif. [5] Sebelum konsep bilangan negatif, matematikawan seperti Diophantus menganggap solusi negatif terhadap masalah adalah "salah" dan persamaan yang memerlukan solusi negatif digambarkan sebagai tidak masuk akal.[6] Matematikawan Barat seperti Leibniz berpendapat bahwa angka negatif tidak valid, namun tetap menggunakannya dalam perhitungan.[7] [8] PerkenalanGaris bilanganHubungan antara bilangan negatif, bilangan positif, dan nol sering dinyatakan dalam bentuk garis bilangan : Angka yang muncul lebih jauh ke kanan pada garis ini lebih besar, sedangkan angka yang muncul lebih jauh ke kiri lebih kecil. Jadi angka nol muncul di tengah, dengan angka positif di sebelah kanan dan angka negatif di sebelah kiri. Perhatikan bahwa bilangan negatif yang besarnya lebih besar dianggap lebih kecil. Misalnya, meskipun (positif) 8 lebih besar dari (positif) 5, ditulis
negatif 8 dianggap kurang dari negatif 5 :
Nomor yang ditandatanganiDalam konteks bilangan negatif, bilangan yang lebih besar dari nol disebut bilangan positif . Jadi setiap bilangan real selain nol adalah positif atau negatif, sedangkan nol sendiri tidak dianggap mempunyai tanda. Bilangan positif terkadang ditulis dengan tanda tambah di depannya, misalnya +3 melambangkan bilangan positif tiga. Karena nol tidak positif atau negatif, istilah non-negatif terkadang digunakan untuk merujuk pada bilangan positif atau nol, sedangkan nonpositif digunakan untuk merujuk pada bilangan negatif atau nol. Nol adalah bilangan netral. Sebagai hasil penguranganBilangan negatif dapat dianggap sebagai hasil pengurangan bilangan yang lebih besar dari bilangan yang lebih kecil. Misalnya, negatif tiga adalah hasil pengurangan tiga dari nol:
Secara umum, pengurangan bilangan yang lebih besar dengan bilangan yang lebih kecil akan menghasilkan hasil negatif, dan besarnya adalah selisih antara kedua bilangan tersebut. Misalnya,
karena 8 − 5 = 3 . Penggunaan bilangan negatif sehari-hariOlahraga
Ilmu Pengetahuan
Keuangan
Lainnya
Aritmatika yang melibatkan bilangan negatifTanda minus "−" menandakan operator untuk operasi pengurangan biner (dua operan ) (seperti pada y − z ) dan operasi negasi unary (satu operan) (seperti pada −x, atau dua kali dalam −(−x) ). Kasus khusus negasi unary terjadi ketika ia beroperasi pada bilangan positif, yang mana hasilnya adalah bilangan negatif (seperti pada −5 ). Ambiguitas simbol "−" umumnya tidak menyebabkan ambiguitas dalam ekspresi aritmatika, karena urutan operasi hanya memungkinkan satu interpretasi atau lainnya untuk setiap "−". Namun, hal ini dapat menimbulkan kebingungan dan sulit bagi seseorang untuk memahami suatu ekspresi ketika simbol operator muncul berdekatan satu sama lain. Solusinya adalah dengan memberi tanda kurung pada unary "−" beserta operannya. Misalnya, ekspresi 7 + −5 mungkin lebih jelas jika ditulis 7 + (−5) (walaupun secara formal artinya sama persis). Ekspresi pengurangan 7 – 5 adalah ekspresi berbeda yang tidak mewakili operasi yang sama, namun mengevaluasi hasil yang sama. Terkadang di sekolah dasar suatu bilangan diawali dengan tanda minus superskrip atau tanda tambah untuk secara eksplisit membedakan bilangan negatif dan positif seperti pada [25]
PenjumlahanPenjumlahan dua bilangan negatif sangat mirip dengan penjumlahan dua bilangan positif. Misalnya,
Idenya adalah bahwa dua utang dapat digabungkan menjadi satu utang yang besarnya lebih besar. Saat menjumlahkan campuran bilangan positif dan negatif, bilangan negatif dapat dianggap sebagai besaran positif yang sedang dikurangkan. Misalnya:
Pada contoh pertama, kredit sebesar 8 digabungkan dengan hutang sebesar 3, sehingga menghasilkan total kredit sebesar 5 . Jika bilangan negatifnya besarnya lebih besar, maka hasilnya negatif:
Di sini kredit lebih kecil dari utang, sehingga hasil bersihnya adalah utang. PenguranganSeperti dibahas di atas, pengurangan dua bilangan non-negatif mungkin menghasilkan jawaban negatif: Secara umum, pengurangan bilangan positif menghasilkan hasil yang sama dengan penjumlahan bilangan negatif yang besarnya sama. Dengan demikian
Dan
Sebaliknya, pengurangan bilangan negatif akan menghasilkan hasil yang sama dengan penjumlahan bilangan positif yang besarnya sama. (Idenya adalah kehilangan utang sama saja dengan memperoleh kredit.) Jadi
Dan
PerkalianSaat mengalikan bilangan, besaran hasil kali selalu merupakan hasil kali kedua besaran tersebut. Tanda suatu produk ditentukan oleh aturan berikut:
Dengan demikian
Dan
Alasan di balik contoh pertama sederhana saja: menambahkan tiga −2 bersama-sama akan menghasilkan −6 :
Alasan dibalik contoh kedua lebih rumit. Idenya sekali lagi adalah bahwa kehilangan utang sama saja dengan memperoleh kredit. Dalam hal ini, kehilangan dua hutang yang masing-masing berjumlah tiga sama dengan memperoleh kredit sebesar enam:
Konvensi bahwa hasil kali dua bilangan negatif adalah positif juga diperlukan agar perkalian mengikuti hukum distributif . Dalam hal ini, kita mengetahuinya
Karena 2 × (−3) = −6, hasil kali (−2) × (−3) harus sama dengan 6 . Aturan ini mengarah pada aturan lain (yang setara)—tanda hasil kali a × b bergantung pada tanda a sebagai berikut:
Pembenaran mengapa hasil kali dua bilangan negatif merupakan bilangan positif dapat diamati dalam analisis bilangan kompleks . PembagianAturan tanda pada pembagian sama dengan aturan tanda pada perkalian. Misalnya,
Dan
Jika pembagian dan pembaginya bertanda sama maka hasilnya positif, jika berbeda tandanya maka hasilnya negatif. PenyangkalanVersi negatif dari bilangan positif disebut sebagai negasinya . Misalnya, −3 adalah negasi dari bilangan positif 3 . Jumlah suatu bilangan dan negasinya sama dengan nol:
Artinya, negasi suatu bilangan positif adalah kebalikan penjumlahan dari bilangan tersebut. Dengan menggunakan aljabar, kita dapat menuliskan prinsip ini sebagai identitas aljabar :
Identitas ini berlaku untuk bilangan positif apa pun x . Hal ini dapat berlaku untuk semua bilangan real dengan memperluas definisi negasi hingga mencakup bilangan nol dan negatif. Secara khusus:
Misalnya, negasi dari −3 adalah +3 . Secara umum, Nilai mutlak suatu bilangan adalah bilangan non-negatif yang besarnya sama. Misalnya, nilai absolut dari −3 dan nilai absolut dari 3 keduanya sama dengan 3, dan nilai absolut dari 0 adalah 0 . Konstruksi formal bilangan bulat negatifDengan cara yang mirip dengan bilangan rasional, kita dapat memperluas bilangan asli N ke bilangan bulat Z dengan mendefinisikan bilangan bulat sebagai pasangan terurut bilangan asli ( a, b ). Kita dapat memperluas penjumlahan dan perkalian pada pasangan-pasangan ini dengan aturan berikut:
Kami mendefinisikan hubungan kesetaraan ~ pada pasangan ini dengan aturan berikut: Hubungan ekivalen ini sesuai dengan penjumlahan dan perkalian yang didefinisikan di atas, dan kita dapat mendefinisikan Z sebagai himpunan hasil bagi N ²/~, yaitu kita mengidentifikasi dua pasangan ( a, b ) dan ( c, d ) jika keduanya ekuivalen dalam persamaan tersebut. di atas akal. Perhatikan bahwa Z, yang dilengkapi dengan operasi penjumlahan dan perkalian ini, adalah sebuah ring, dan pada kenyataannya, merupakan contoh prototipikal dari sebuah ring. Kita juga dapat menentukan pesanan total pada Z dengan menulis
Hal ini akan menghasilkan penjumlahan nol dalam bentuk ( a, a ), invers penjumlahan dari ( a, b ) dalam bentuk ( b, a ), satuan perkalian dalam bentuk ( a + 1, a ), dan a definisi pengurangan Konstruksi ini merupakan kasus khusus dari konstruksi Grothendieck . KeunikanInvers penjumlahan suatu bilangan bersifat unik, seperti ditunjukkan oleh pembuktian berikut. Seperti disebutkan di atas, invers penjumlahan suatu bilangan didefinisikan sebagai nilai yang bila ditambahkan ke bilangan tersebut akan menghasilkan nol. Misalkan x adalah bilangan dan y adalah invers penjumlahannya. Misalkan y′ adalah invers penjumlahan lain dari x . Menurut definisi, Jadi, x + y′ = x + y . Dengan menggunakan hukum pembatalan penjumlahan, terlihat bahwa y′ = y . Jadi y sama dengan invers penjumlahan lainnya dari x . Artinya, y adalah invers penjumlahan unik dari x . SejarahUntuk waktu yang lama, pemahaman tentang bilangan negatif tertunda karena ketidakmungkinan memiliki suatu benda fisik dalam jumlah bilangan negatif, misalnya "minus tiga apel", dan solusi negatif terhadap masalah dianggap "salah". Di Mesir Helenistik, matematikawan Yunani Diophantus pada abad ke-3 M mengacu pada persamaan yang setara dengan (yang memiliki solusi negatif) dalam Arithmetica, mengatakan bahwa persamaan tersebut tidak masuk akal. [26] Oleh karena itu, para ahli geometri Yunani mampu menyelesaikan secara geometris semua bentuk persamaan kuadrat yang memberikan akar-akar positif; sementara mereka tidak bisa memperhitungkan orang lain.[27] Bilangan negatif muncul untuk pertama kalinya dalam sejarah dalam Sembilan Bab Seni Matematika (九章算術, Jiǔ zhāng suàn-shù ), yang dalam bentuknya yang sekarang berasal dari periode Han, tetapi mungkin berisi materi yang jauh lebih tua. [3] Ahli matematika Liu Hui (c. abad ke-3) menetapkan aturan untuk penjumlahan dan pengurangan bilangan negatif. Sejarawan Jean-Claude Martzloff berteori bahwa pentingnya dualitas dalam filsafat alam Tiongkok memudahkan orang Tiongkok menerima gagasan bilangan negatif. [4] Orang Cina mampu menyelesaikan persamaan simultan yang melibatkan bilangan negatif. Sembilan Bab menggunakan batang hitung berwarna merah untuk menunjukkan koefisien positif dan batang hitam untuk menunjukkan koefisien negatif. [4] [28] Sistem ini merupakan kebalikan dari pencetakan angka positif dan negatif masa kini di bidang perbankan, akuntansi, dan perdagangan, dimana angka merah menunjukkan nilai negatif dan angka hitam menunjukkan nilai positif. Liu Hui menulis:
Naskah Bakhshali India kuno melakukan perhitungan dengan angka negatif, menggunakan "+" sebagai tanda negatif.[29] Tanggal naskah tidak dapat dipastikan. LV Gurjar memberi tanggal paling lambat pada abad ke-4, [30] Hoernle memberi tanggal antara abad ketiga dan keempat, Ayyangar dan Pingree memberi tanggal pada abad ke-8 atau ke-9, [31] dan George Gheverghese Joseph memberi tanggal sekitar tahun 400 M dan paling lambat awal abad ke-7, [32] Selama abad ke-7 M, angka negatif digunakan di India untuk mewakili utang. Matematikawan India Brahmagupta, dalam Brahma-Sphuta-Siddhanta (ditulis sekitar tahun 630 M), membahas penggunaan bilangan negatif untuk menghasilkan rumus kuadrat bentuk umum yang masih digunakan hingga saat ini. [26] Ia juga menemukan solusi negatif persamaan kuadrat dan memberikan aturan mengenai operasi yang melibatkan bilangan negatif dan nol, seperti "Utang yang dipotong dari ketiadaan menjadi kredit; kredit yang dipotong dari ketiadaan menjadi utang." Dia menyebut angka positif sebagai “keberuntungan”, nol sebagai “sandi”, dan angka negatif sebagai “hutang”.[33] [34] Pada abad ke-9, matematikawan Islam sudah mengenal bilangan negatif dari karya matematikawan India, namun pengenalan dan penggunaan bilangan negatif pada periode ini masih bersifat pemalu. [5] Al-Khawarizmi dalam karyanya Al-jabr wa'l-muqabala (dari mana kata "aljabar" berasal) tidak menggunakan bilangan negatif atau koefisien negatif. [5] Namun dalam waktu lima puluh tahun, Abu Kamil mengilustrasikan aturan tanda untuk memperluas perkalian , [35] dan al-Karaji menulis dalam al-Fakhrī -nya bahwa "kuantitas negatif harus dihitung sebagai istilah". [5] Pada abad ke-10, Abū al-Wafā' al-Būzjānī menganggap utang sebagai angka negatif dalam A Book on What Is Necessary from the Science of Arithmetic for Scribes and Businessmen . [35] Pada abad ke-12, penerus al-Karaji menyatakan aturan umum tanda dan menggunakannya untuk menyelesaikan pembagian polinomial . [5] Sebagaimana al-Samaw'al menulis:
Pada abad ke-12 di India, Bhāskara II memberikan akar negatif pada persamaan kuadrat tetapi menolaknya karena tidak sesuai dengan konteks masalahnya. Ia menyatakan bahwa nilai negatif "dalam hal ini tidak boleh diambil, karena tidak memadai; masyarakat tidak menyetujui akar negatif". Fibonacci mengizinkan solusi negatif dalam masalah keuangan yang dapat diartikan sebagai debit (bab 13 Liber Abaci, 1202 M) dan kemudian sebagai kerugian (dalam karya Fibonacci Flos ). Pada abad ke-15, Nicolas Chuquet, seorang Perancis, menggunakan bilangan negatif sebagai eksponen [36] tetapi menyebutnya sebagai "bilangan yang tidak masuk akal".[37] Michael Stifel membahas bilangan negatif dalam karyanya Arithmetica Integra tahun 1544 M, di mana ia juga menyebutnya numeri absurdi (angka absurd). Pada tahun 1545, Gerolamo Cardano, dalam bukunya <i id="mwAl8">Ars Magna</i>, memberikan perlakuan memuaskan pertama terhadap bilangan negatif di Eropa. [26] Dia tidak mengizinkan bilangan negatif dalam pertimbangan persamaan kubiknya, jadi dia harus menangani, misalnya, secara terpisah dari (dengan dalam kedua kasus). Secara keseluruhan, Cardano terdorong untuk mempelajari tiga belas jenis persamaan kubik, masing-masing dengan semua suku negatif dipindahkan ke sisi lain tanda = untuk menjadikannya positif. (Cardano juga berurusan dengan bilangan kompleks, tetapi dapat dimengerti bahwa ia bahkan kurang menyukainya.) Pada tahun 1748 Leonhard Euler, dengan secara formal memanipulasi deret pangkat kompleks dengan menggunakan akar kuadrat dari memperoleh rumus analisis kompleks Euler : [38]Di mana Pada tahun 1797 M, Carl Friedrich Gauss menerbitkan bukti teorema dasar aljabar tetapi menyatakan keraguannya pada saat itu tentang "metafisika sebenarnya dari akar kuadrat − 1".[39] Namun, sebagian besar matematikawan Eropa menolak konsep bilangan negatif hingga pertengahan abad ke-19.[40] Pada abad ke-18, merupakan praktik umum untuk mengabaikan hasil negatif apa pun yang diperoleh dari persamaan, dengan asumsi bahwa hasil tersebut tidak ada artinya.[41] Pada tahun 1759 M, matematikawan Inggris Francis Maseres menulis bahwa bilangan negatif "menggelapkan seluruh doktrin persamaan dan menggelapkan hal-hal yang sifatnya menjadi terlalu jelas dan sederhana". Dia sampai pada kesimpulan bahwa angka negatif tidak masuk akal.[42] Lihat juga
ReferensiKutipan
Bibliografi
Pranala luar |