Rumus Euler dibuktikan (dalam bentuk yang tidak jelas) untuk pertama kalinya oleh Roger Cotes pada 1714, kemudian ditemukan kembali dan dipopulerkan oleh Euler pada 1748. Tidak satu pun dari orang orang melihat interpretasi geometri dari rumus: pandangan bilangan kompleks sebagai titik di bidang muncul hanya sekitar 50 tahun kemudian (lihat Caspar Wessel).
Aplikasi dalam teori bilangan kompleks
Artikel atau sebagian dari artikel ini mungkin diterjemahkan dari Euler formula di en.wikipedia.org. Isinya masih belum akurat, karena bagian yang diterjemahkan masih perlu diperhalus dan disempurnakan. Jika Anda menguasai bahasa aslinya, harap pertimbangkan untuk menelusuri referensinya dan menyempurnakan terjemahan ini. Anda juga dapat ikut bergotong royong pada ProyekWiki Perbaikan Terjemahan.
(Pesan ini dapat dihapus jika terjemahan dirasa sudah cukup tepat. Lihat pula: panduan penerjemahan artikel)
Rumus ini dapat diartikan mengatakan bahwa fungsinya menelusuri lingkaran satuan dalam bidang bilangan kompleks sebagai x berkisar melalui bilangan real. Di sini, adalah sudut yang dibuat oleh garis yang menghubungkan titik asal dengan titik pada lingkaran satuan dengan sumbu nyata positif, diukur berlawanan arah jarum jam dan dalam radian. Rumusnya hanya valid jika fungsi sinus dan kosinus menggunakan argumennya dalam radian, bukan dalam derajat.
Buktinya didasarkan pada deret Taylor perluasan dari fungsi eksponensial (di mana adalah bilangan kompleks) dan dari dan untuk bilangan real (lihat di bawah). Faktanya, bukti yang sama menunjukkan bahwa rumus Euler berlaku untuk semua bilangan kompleks .
Rumus Euler dapat digunakan untuk merepresentasikan bilangan kompleks pada koordinat polar. Bilangan kompleks apa pun z=x+iy dapat ditulis sebagai
di mana , , , dan adalah dari sudut- antara sumbu x dan vektor dapat diukur berlawanan arah jarum jam dan dalam radian yang ditentukan hingga penambahan 2π.
Menggunakan hukum eksponensial
berlaku untuk bilangan kompleks dan dan rumus Euler, dapat ditulis
Jadi, logaritma bilangan kompleks adalah fungsi multi-nilai, karena faktanya multi-nilai.
Rumus
yang dapat dilihat berlaku untuk semua bilangan bulat , bersama dengan rumus Euler, menyiratkan beberapa identitas trigonometri serta rumus de Moivre.
Hubungan dengan trigonometri
Rumus Euler memberikan hubungan yang kuat antara analisis dan trigonometri, dan memberikan interpretasi dari fungsi sinus dan cosinus sebagai jumlah bobot dari fungsi eksponensial:
Kedua persamaan di atas dapat diturunkan dengan menambah atau mengurangi rumus Euler:
and solving for either cosine or sine.
Rumus ini bahkan dapat berfungsi sebagai definisi fungsi trigonometri untuk argumen kompleks x. Contohnya, membiarkan x = iy, kita punya:
Aplikasi lain
Dalam persamaan diferensial, fungsinya eix sering digunakan untuk menyederhanakan derivasi, meskipun jawaban akhirnya adalah fungsi nyata yang melibatkan sinus dan kosinus. Identitas Euler adalah konsekuensi mudah dari rumus Euler.
Dalam teknik kelistrikan dan bidang lainnya, sinyal yang berubah secara berkala dari waktu ke waktu sering kali digambarkan sebagai kombinasi fungsi sinus dan kosinus (lihat analisis Fourier), dan ini lebih mudah diekspresikan sebagai bagian nyata dari fungsi eksponensial dengan eksponen imajiner, menggunakan rumus Euler.
Bukti
Berbagai bukti dari rumus tersebut dimungkinkan.
Menggunakan deret Taylor
Berikut adalah bukti rumus Euler menggunakan ekspansi deret Taylor
serta fakta dasar tentang kekuatan i:
dan seterusnya. Fungsinya ex, cos(x) dan sin(x) (dengan asumsi x adalah riil) dapat ditulis sebagai:
dan untuk kompleks z kita mendefinisikan masing-masing fungsi ini dengan rangkaian di atas, menggantikan x dengan iz. Kemungkinan karena radius konvergensi dari setiap deret tidak terbatas. Kami kemudian menemukan itu
Penataan kembali suku-suku dibenarkan karena setiap deret adalah konvergensi mutlak. Pengambilan z = x menjadi bilangan real memberikan identitas asli saat Euler menemukannya.