RNA dutaDalam biologi molekuler, messenger RNA (mRNA) atau RNA duta adalah molekul RNA untai tunggal yang sintesisnya diarahkan oleh gen pada berkas DNA sebagai pembawa pesan.[1] mRNA adalah RNA yang merupakan hasil transkripsi DNA dan menjadi perantara pembawa urutan protein dalam proses yang disebut translasi. mRNA terbentuk selama transkripsi, di mana enzim RNA polimerase menyalin gen dari DNA menjadi molekul RNA awal yang disebut pra-mRNA. Pra-mRNA ini mengandung intron (daerah non-kode) dan ekson (daerah kode). Sebelum dapat digunakan untuk membuat protein, intron dihilangkan melalui proses yang disebut penyambungan RNA, yang hanya menyisakan ekson yang kemudian disebut mRNA matang. mRNA matang ini kemudian diterjemahkan oleh ribosom, yang membaca urutannya dan, dengan bantuan transfer RNA (tRNA), membangun protein dari asam amino. Langkah-langkah ini-transkripsi, pemrosesan RNA, dan translasi merupakan bagian penting dari dogma sentral biologi molekuler, yang menjelaskan bagaimana informasi genetik mengalir dari DNA ke RNA ke protein. Seperti DNA, informasi genetik dalam mRNA dibawa dalam urutan nukleotida, yang disusun menjadi kembar tiga yang disebut kodon. Setiap kodon berhubungan dengan asam amino tertentu, kecuali kodon penghenti (stop kodon), yang menandakan akhir sintesis protein. Untuk menerjemahkan kodon-kodon ini menjadi asam amino, ada dua jenis RNA yang terlibat: (i) transfer RNA (tRNA) yang engenali setiap kodon pada mRNA dan membawa asam amino yang sesuai ke ribosom; (ii) RNA ribosom (rRNA) yaitu komponen utama ribosom, yang memfasilitasi perakitan asam amino menjadi protein selama translasi. Bersama-sama, jenis RNA ini memungkinkan penerjemahan informasi genetik yang akurat menjadi protein. Konsep mRNA dikembangkan pada 1960 selama percakapan antara Sydney Brenner, Francis Crick, dan François Jacob. Pada 1961, mRNA diidentifikasi dan dideskripsikan secara independen oleh dua tim: satu tim yang terdiri dari Brenner, Jacob, dan Matthew Meselson, dan tim lainnya yang dipimpin oleh James Watson. Ketika mereka mempersiapkan temuan mereka untuk dipublikasikan, Jacob dan Jacques Monod menciptakan istilah “messenger RNA” untuk menggambarkan molekul ini, yang membawa informasi genetik dari DNA ke ribosom untuk sintesis protein. SintesisSiklus hidup molekul mRNA dimulai dengan transkripsi dan diakhiri dengan degradasi. Selama periode ini, mRNA dapat mengalami berbagai proses, termasuk pemrosesan, pengeditan, dan pengangkutan, terutama dalam sel eukariotik, yang memerlukan modifikasi ekstensif dibandingkan dengan mRNA prokariotik. Pada eukariota, mRNA dan protein yang terkait membentuk kompleks yang dikenal sebagai messenger ribonucleoprotein (mRNP). TranskripsiTranskripsi adalah proses di mana RNA disintesis dari templat DNA. Dalam proses ini, RNA polimerase mensintesis untaian mRNA dengan menyalin informasi genetik dari DNA. Perbedaan antara transkripsi eukariotik dan prokariotik:
Urasil vs Timin: Selama transkripsi, urasil (U) digunakan sebagai pengganti timin (T), yang ditemukan dalam DNA. Substitusi ini memungkinkan mRNA untuk secara efektif membawa informasi genetik dari DNA ke ribosom untuk ditranslasikan. Transisi evolusi dari RNA ke DNA didukung oleh hipotesis dunia RNA, yang menunjukkan bahwa bentuk kehidupan awal mengandalkan molekul RNA sebelum genom DNA muncul. Pemrosesan pra-mRNA eukariotikPra-mRNA eukariotik harus mengalami beberapa modifikasi sebelum menjadi mRNA yang matang: 1. PenyambunganPenyambungan RNA adalah proses menghilangkan intron (urutan non-kode) dan menggabungkan ekson (urutan kode) untuk menghasilkan mRNA matang. 2. Penambahan tutup 5'Penutup 5' adalah nukleotida guanin yang dimodifikasi yang ditambahkan ke ujung 5' mRNA segera setelah transkripsi dimulai. Tutup ini
Penambahan tutup 5' terjadi secara ko-transkripsi, yang berarti terkait dengan proses transkripsi. 3. PengeditanBeberapa mRNA dapat mengalami pengeditan, di mana nukleotida tertentu diubah setelah transkripsi. Contohnya adalah pengeditan mRNA apolipoprotein B, yang menyebabkan kodon berhenti lebih awal dan menghasilkan protein yang lebih pendek yang diproduksi di jaringan tertentu. 4. PoliadenilasiPoliadenilasi adalah penambahan rantai panjang nukleotida adenin (ekor poli (A)) ke ujung 3' mRNA, yang membantu:
Ekor poli (A) dapat bervariasi panjangnya dan dapat dipengaruhi oleh mutasi situs poliadenilasi. TransportasimRNA eukariotik harus diangkut dari nukleus ke sitoplasma, karena transkripsi dan translasi terkotak-kotak di dalam sel-sel ini. Pengangkutan ini diatur dan melibatkan pengikatan pada protein pengikat topi (misalnya, CBP20 dan CBP80) dan kompleks transkripsi/ekspor (TREX). Pada sel khusus, mRNA tertentu diangkut ke lokasi tertentu, seperti dendrit pada neuron, di mana penerjemahan lokal dapat terjadi. Proses ini dapat difasilitasi oleh kode pos dalam mRNA yang mengarahkan mereka ke tujuan yang dimaksudkan. TranslasiTranslasi adalah proses sintesis protein dari cetakan mRNA. Perbedaan dalam translasi:
Translasi eukariotik tidak secara langsung digabungkan dengan transkripsi, yang berarti ada kemungkinan tingkat mRNA menjadi rendah sementara tingkat protein tetap tinggi, seperti yang terlihat dalam konteks kanker tertentu. StrukturDaerah pengkodeanDaerah pengkodean mRNA terdiri dari urutan yang dikenal sebagai kodon, yang ditranslasikan menjadi protein oleh ribosom. Pada sel eukariotik, setiap mRNA biasanya mengkode satu protein, sedangkan pada sel prokariotik, mRNA dapat mengkode beberapa protein. Daerah pengkodean dimulai dengan kodon awal (biasanya AUG) dan diakhiri dengan kodon akhir, yang dapat berupa UAG (“amber”), UAA (“oker”), atau UGA (“opal”). Stabilitas daerah pengkodean sering kali ditingkatkan dengan pemasangan basa internal, yang membuatnya kurang rentan terhadap degradasi. Selain perannya dalam pengkodean protein, segmen tertentu dalam daerah pengkodean dapat berfungsi sebagai urutan pengaturan, seperti peningkat penyambungan eksonik atau peredam. Daerah yang tidak ditranslasikan (UTR)Daerah yang tidak ditranslasikan (UTR) adalah segmen mRNA yang tidak ditransilasikan menjadi protein. Ada dua jenis utama UTR:
Kedua UTR ditranskripsi bersama dengan wilayah pengkodean dan dianggap eksonik. UTR memainkan beberapa peran dalam ekspresi gen, termasuk:
UTR juga dapat mengadopsi struktur sekunder yang unik yang membantu mengatur fungsi mRNA. Sebagai contoh, riboswitch adalah elemen UTR yang dapat mengikat molekul kecil, memengaruhi tingkat transkripsi atau translasi. Ekor poli (A)Ekor poli (A) 3' adalah bentangan panjang nukleotida adenin yang ditambahkan ke ujung 3' dari pra-mRNA. Ekor ini memiliki beberapa fungsi penting:
mRNA monosistronik vs. polisistronik
Sirkularisasi mRNAPada eukariota, mRNA dapat membentuk struktur melingkar karena interaksi antara eIF4E dan protein pengikat poli (A), yang berikatan dengan eIF4G, menciptakan jembatan yang mendorong siklus ribosom pada mRNA. Sirkularisasi diperkirakan terjadi:
Virus tertentu juga memanfaatkan mekanisme sirkularisasi. Sebagai contoh, mRNA virus polio memiliki struktur daun semanggi yang mengikat protein untuk membuat bentuk melingkar. Virus lain dapat mensirkulasi genom mereka, yang membantu replikasi yang efisien dengan meningkatkan siklus RNA polimerase yang bergantung pada RNA selama replikasi genom. DegradasiMRNA yang berbeda dalam sel yang sama memiliki masa hidup yang berbeda, yang memengaruhi berapa lama mereka dapat memproduksi protein. Dalam sel bakteri, mRNA dapat bertahan dari beberapa detik hingga lebih dari satu jam, dengan umur rata-rata 1 hingga 3 menit, jauh lebih pendek dibandingkan dengan sel eukariotik. Pada sel mamalia, masa hidup mRNA dapat berkisar dari beberapa menit hingga beberapa hari. Semakin lama mRNA stabil, semakin banyak protein yang dapat diproduksi, dan umurnya yang terbatas memungkinkan sel untuk dengan cepat mengadaptasi sintesis protein sebagai respons terhadap kondisi yang berubah. Degradasi mRNA prokariotikPada prokariota (seperti bakteri), mRNA memiliki umur yang pendek karena degradasi oleh berbagai enzim, termasuk ribonuklease, yang memotong mRNA dan mendegradasinya dari kedua ujungnya. Molekul RNA kecil juga dapat merangsang pemecahan mRNA tertentu dengan cara berpasangan dengannya dan meningkatkan aktivitas ribonuklease. Bakteri memiliki semacam “topi 5'” yang terbuat dari gugus trifosfat. Ketika dua fosfat dihilangkan, mRNA dikenali untuk didegradasi oleh enzim RNase J, yang memecahnya dari ujung 5'. Pergantian mRNA eukariotikDalam sel eukariotik, terdapat keseimbangan antara penerjemahan dan degradasi mRNA. mRNA yang ditranslasi secara aktif dilindungi oleh protein seperti eIF-4E dan eIF-4G pada ujung 5' dan protein pengikat poli (A) pada ujung 3', yang mencegah degradasi pesan. Ketika mRNA tidak lagi ditranslasi, ekor poli (A) nya diperpendek, yang menyebabkan destabilisasi dan degradasi oleh kompleks seperti eksosom atau kompleks decapping. Transisi dari penerjemahan aktif ke degradasi masih belum sepenuhnya dipahami, dan penelitian terbaru menunjukkan bahwa beberapa peluruhan mRNA bahkan dimulai di dalam nukleus, bukan hanya di dalam sitoplasma. Peluruhan elemen kaya AUBeberapa mRNA dalam sel mamalia memiliki elemen kaya AU yang membuatnya lebih rentan terhadap degradasi. Urutan ini menarik protein yang menstimulasi pelepasan ekor poli (A), yang mengarah pada peluruhan mRNA melalui kompleks eksosom atau decapping. Degradasi yang cepat ini sangat penting untuk mencegah produksi berlebihan molekul penting seperti sitokin, seperti faktor nekrosis tumor (TNF) dan faktor perangsang koloni makrofag granulosit (GM-CSF). Elemen kaya AU juga membantu mengatur produksi proto-onkogen tertentu, seperti faktor transkripsi c-Jun dan c-Fos. Peluruhan yang dimediasi non-sense (NMD)Peluruhan yang dimediasi oleh non-sense (NMD) adalah mekanisme pengawasan dalam sel eukariotik yang mengidentifikasi dan mendegradasi mRNA yang mengandung kodon penghenti prematur, yang juga dikenal sebagai kodon nonsense (omong kosong). Kodon penghenti prematur ini dapat diakibatkan oleh berbagai kesalahan seperti penyambungan yang tidak sempurna, mutasi dalam DNA, kesalahan transkripsi, atau pergeseran kerangka ribosom selama translasi. Ketika kodon penghenti prematur terdeteksi, mRNA menjadi sasaran degradasi melalui proses seperti pemutusan 5', penghilangan ekor poli (A) 3', atau pembelahan endonukleolitik. RNA pengganggu kecil (siRNA)RNA pengganggu kecil (siRNA) diproses dari molekul RNA untai ganda yang lebih panjang oleh enzim Dicer. Pada metazoa (organisme multiseluler), siRNA dimasukkan ke dalam kompleks pembungkaman yang diinduksi RNA (RISC). Kompleks ini mengandung endonuklease yang secara khusus membelah mRNA yang saling melengkapi dengan siRNA. Fragmen mRNA yang dihasilkan kemudian didegradasi lebih lanjut oleh eksonuklease. siRNA banyak digunakan dalam penelitian laboratorium untuk menghambat fungsi gen tertentu dalam kultur sel dan diyakini berperan dalam respons kekebalan bawaan terhadap virus RNA untai ganda. MikroRNA (miRNA)MicroRNA (miRNA) adalah molekul RNA kecil yang biasanya merupakan pelengkap sebagian dari sekuens target dalam mRNA metazoa. Ketika miRNA berikatan dengan mRNA targetnya, miRNA dapat menghambat translasi dan mendorong pemindahan ekor poli (A), sehingga mempercepat degradasi mRNA. Mekanisme spesifik yang digunakan miRNA untuk mengerahkan efeknya adalah area penelitian yang aktif. Mekanisme degradasi lainnyaSelain NMD, siRNA, dan miRNA, ada beberapa jalur degradasi atau peluruhan lain untuk mRNA, seperti peluruhan tanpa henti, yang menargetkan mRNA yang tidak memiliki kodon penghenti, dan pembungkaman oleh RNA yang berinteraksi dengan Piwi (piRNA). Mekanisme tambahan ini berkontribusi pada regulasi ekspresi gen dan pemeliharaan homeostasis seluler. AplikasiPemberian urutan mRNA yang dimodifikasi memungkinkan sel untuk menghasilkan protein, yang dapat secara langsung mengobati penyakit, berfungsi sebagai vaksin, atau memandu sel punca untuk berdiferensiasi dengan cara yang diinginkan.[2] Namun, tantangan utama dalam terapi RNA melibatkan pengiriman RNA ke sel target.[3] Tantangan ini termasuk kecenderungan RNA untuk terdegradasi dengan cepat, memicu respons imun, dan ketidakmampuannya untuk dengan mudah melewati membran sel. Begitu berada di dalam sel, RNA harus mencapai sitoplasma, di mana ribosom dapat menggunakannya untuk memproduksi protein.[2] Konsep mRNA sebagai terapi pertama kali diperkenalkan pada 1989 setelah teknik transfeksi dikembangkan.[4] Pada 1990-an, vaksin mRNA untuk pengobatan kanker yang dipersonalisasi dibuat dengan menggunakan mRNA yang tidak dimodifikasi. Sejak saat itu, terapi mRNA telah dieksplorasi untuk mengobati kanker, penyakit autoimun, gangguan metabolisme, dan peradangan pernapasan. Alat pengedit gen seperti CRISPR juga dapat menggunakan mRNA untuk menghasilkan protein yang diperlukan. Sejak 2010-an, vaksin dan terapi berbasis RNA telah muncul sebagai kelas obat baru yang menjanjikan. Vaksin mRNA mendapatkan perhatian global selama pandemi COVID-19, dengan Pfizer-BioNTech dan Moderna memproduksi vaksin pertama yang disetujui. Pada 2023, Katalin Karikó dan Drew Weissman menerima Hadiah Nobel dalam bidang Fisiologi atau Kedokteran atas karya mereka dalam mengembangkan vaksin mRNA untuk melawan COVID-19. SejarahSelama 1950-an, beberapa penelitian biologi molekuler mengisyaratkan bahwa RNA berperan dalam sintesis protein, meskipun fungsinya masih belum jelas. Salah satu temuan awal datang dari Jacques Monod dan timnya, yang menunjukkan bahwa sintesis RNA diperlukan untuk produksi protein, khususnya dalam enzim β-galaktosidase pada E. coli.[5] Demikian pula, Arthur Pardee mengamati akumulasi RNA pada 1954.[6] Pada 1953, Alfred Hershey, June Dixon, dan Martha Chase mendeskripsikan molekul RNA tertentu pada E. coli yang menghilang tak lama setelah disintesis.[7] Meskipun ini mungkin merupakan pengamatan awal dari mRNA, tetapi pada saat itu belum dikenal.[8] Konsep mRNA pertama kali dibayangkan oleh Sydney Brenner dan Francis Crick pada 15 April 1960, di King's College, Cambridge, saat berbincang-bincang dengan François Jacob. Jacob menjelaskan eksperimen PaJaMo, yang dilakukan oleh Arthur Pardee, Jacob, dan Jacques Monod, yang mengisyaratkan keberadaan mRNA tetapi tidak membuktikannya secara meyakinkan. Dengan dorongan dari Crick, Brenner dan Jacob mulai menguji hipotesis tersebut. Mereka menghubungi Matthew Meselson di Institut Teknologi California untuk meminta bantuan. Selama musim panas 1960, Brenner, Jacob, dan Meselson melakukan percobaan di laboratorium Meselson di Caltech, yang memberikan bukti pertama tentang mRNA. Kemudian pada tahun itu, Jacob dan Monod menciptakan istilah “messenger RNA” dan mengembangkan penjelasan teoritis pertama tentang fungsinya.[8] Pada Februari 1961, James Watson mengungkapkan bahwa tim risetnya di Harvard telah melakukan eksperimen yang juga mendukung gagasan mRNA, dan sampai pada kesimpulan yang sama dengan Sydney Brenner dan rekan-rekannya. Watson meminta Brenner dan yang lainnya untuk menunda mempublikasikan temuan mereka sehingga kedua tim dapat mempublikasikan hasil penelitian mereka pada waktu yang sama. Mereka setuju, dan sebagai hasilnya, artikel Brenner dan Watson diterbitkan secara bersamaan dalam edisi yang sama di jurnal Nature pada Mei 1961. Pada bulan yang sama, François Jacob dan Jacques Monod mempublikasikan kerangka teori mereka untuk mRNA di Journal of Molecular Biology.[8] Referensi
|