Polyhedron with 62 faces
3D model of a great truncated icosidodecahedron
In geometry , the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron ) is a nonconvex uniform polyhedron , indexed as U68 . It has 62 faces (30 squares , 20 hexagons , and 12 decagrams ), 180 edges, and 120 vertices.[ 1] It is given a Schläfli symbol t0,1,2 {5 / 3 ,3}, and Coxeter-Dynkin diagram , .
Cartesian coordinates
Cartesian coordinates for the vertices of a great truncated icosidodecahedron centered at the origin are all the even permutations of
(
±
φ
,
±
φ
,
±
[
3
−
1
φ
]
)
,
(
±
2
φ
,
±
1
φ
,
±
1
φ
3
)
,
(
±
φ
,
±
1
φ
2
,
±
[
1
+
3
φ
]
)
,
(
±
5
,
±
2
,
±
5
φ
)
,
(
±
1
φ
,
±
3
,
±
2
φ
)
,
{\displaystyle {\begin{array}{ccclc}{\Bigl (}&\pm \,\varphi ,&\pm \,\varphi ,&\pm {\bigl [}3-{\frac {1}{\varphi }}{\bigr ]}&{\Bigr )},\\{\Bigl (}&\pm \,2\varphi ,&\pm \,{\frac {1}{\varphi }},&\pm \,{\frac {1}{\varphi ^{3}}}&{\Bigl )},\\{\Bigl (}&\pm \,\varphi ,&\pm \,{\frac {1}{\varphi ^{2}}},&\pm {\bigl [}1+{\frac {3}{\varphi }}{\bigr ]}&{\Bigr )},\\{\Bigl (}&\pm \,{\sqrt {5}},&\pm \,2,&\pm \,{\frac {\sqrt {5}}{\varphi }}&{\Bigr )},\\{\Bigl (}&\pm \,{\frac {1}{\varphi }},&\pm \,3,&\pm \,{\frac {2}{\varphi }}&{\Bigr )},\end{array}}}
where
φ
=
1
+
5
2
{\displaystyle \varphi ={\tfrac {1+{\sqrt {5}}}{2}}}
is the golden ratio .
Great disdyakis triacontahedron
3D model of a great disdyakis triacontahedron
The great disdyakis triacontahedron (or trisdyakis icosahedron ) is a nonconvex isohedral polyhedron . It is the dual of the great truncated icosidodecahedron. Its faces are triangles.
Proportions
The triangles have one angle of
arccos
(
1
6
+
1
15
5
)
≈
71.594
636
220
88
∘
{\displaystyle \arccos \left({\tfrac {1}{6}}+{\tfrac {1}{15}}{\sqrt {5}}\right)\approx 71.594\,636\,220\,88^{\circ }}
, one of
arccos
(
3
4
+
1
10
5
)
≈
13.192
999
040
74
∘
{\displaystyle \arccos \left({\tfrac {3}{4}}+{\tfrac {1}{10}}{\sqrt {5}}\right)\approx 13.192\,999\,040\,74^{\circ }}
and one of
arccos
(
3
8
−
5
24
5
)
≈
95.212
364
738
38
∘
.
{\displaystyle \arccos \left({\tfrac {3}{8}}-{\tfrac {5}{24}}{\sqrt {5}}\right)\approx 95.212\,364\,738\,38^{\circ }.}
The dihedral angle equals
arccos
(
−
179
+
24
5
241
)
≈
121.336
250
807
39
∘
.
{\displaystyle \arccos \left({\tfrac {-179+24{\sqrt {5}}}{241}}\right)\approx 121.336\,250\,807\,39^{\circ }.}
Part of each triangle lies within the solid, hence is invisible in solid models.
See also
References
External links
Kepler-Poinsot polyhedra (nonconvex regular polyhedra)Uniform truncations of Kepler-Poinsot polyhedra Nonconvex uniform hemipolyhedra Duals of nonconvex uniform polyhedra Duals of nonconvex uniform polyhedra with infinite stellations