Star in the constellation Aquarius
WASP-6 , also officially named Márohu , is a type-G yellow dwarf star located about 651 light-years (200 parsecs ) away in the Aquarius constellation . Dim at magnitude 12, it is visible through a moderate sized amateur telescope . The star is about 80% of the size and mass of the Sun and it is a little cooler.[ 4] Starspots in the WASP-6 system helped to refine the measurements of the mass and the radius of the planet WASP-6b .[ 6]
Nomenclature
The designation WASP-6 indicates that this was the 6th star found to have a planet by the Wide Angle Search for Planets .
In 2019 the IAU announced that WASP-6 and its planet WASP-6b would be given official names chosen by the public from the proposals collected in a national campaign from the Dominican Republic , as part of NameExoWorlds .[ 7] [ 8] The star WASP-6 is named Márohu and its planet Boinayel from the proposal received by Marvin del Cid. Márohu , the cemí of drought, is the protector of the Sun.[ 9] [ 10]
Planetary system
The SuperWASP project announced that this star has an exoplanet , WASP-6b , in 2008. This object was detected by the astronomical transit method.[ 3]
See also
References
^ "Exoplanet Transit Database" .
^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties" . Astronomy and Astrophysics . 674 : A1. arXiv :2208.00211 . Bibcode :2023A&A...674A...1G . doi :10.1051/0004-6361/202243940 . S2CID 244398875 .
Gaia DR3 record for this source at VizieR .
^ a b c Gillon; Anderson, D. R.; Triaud, A. H. M. J.; Hellier, C.; Maxted, P. F. L.; Pollaco, D.; Queloz, D.; Smalley, B.; et al. (2009). "Discovery and characterization of WASP-6b, an inflated sub-Jupiter mass planet transiting a solar-type star". Astronomy and Astrophysics . 501 (2): 785– 792. arXiv :0901.4705 . Bibcode :2009A&A...501..785G . doi :10.1051/0004-6361/200911749 . S2CID 53607680 .
^ a b c d e f g "WASP-6" . SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 December 2023 .
^ a b Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics . 602 : A107. arXiv :1704.00373 . Bibcode :2017A&A...602A.107B . doi :10.1051/0004-6361/201629882 .
^ Tregloan-Reed, Jeremy; Southworth, John; Burgdorf, M.; Novati, S. Calchi; Dominik, M.; Finet, F.; Jørgensen, U. G.; Maier, G.; Mancini, L.; Prof, S.; Ricci, D.; Snodgrass, C.; Bozza, V.; Browne, P.; Dodds, P.; Gerner, T.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Kains, N.; Kerins, E.; Liebig, C.; Penny, M. T.; Rahvar, S.; Sahu, K.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J. (2015-06-21). "Transits and starspots in the WASP-6 planetary system" . Monthly Notices of the Royal Astronomical Society . 450 (2): 1760– 1769. arXiv :1503.09184 . Bibcode :2015MNRAS.450.1760T . doi :10.1093/mnras/stv730 . ISSN 0035-8711 .
^
"NameExoWorlds" . 2019. Retrieved 6 September 2019 .
^
"Naming" . 2019. Retrieved 6 September 2019 .
^ "Approved names" . NameExoworlds . Retrieved 2020-01-02 .
^ "International Astronomical Union | IAU" . www.iau.org . Retrieved 2020-01-02 .
External links