符号の規約物理学において、ある量の集合についてそれぞれ正か負かの符号を任意に選択できる場合があり、このときの符号の付け方を符号の規約(ふごうのきやく, 英: sign convention)という。ここでいう「任意」とは、この符号について異なる規約を(一貫して)用いたとしても、同一の物理系として正確に記述されるという意味である。このため符号選択は(論文や書籍の)著者によって様々であり、しばしば科学研究における混乱や不満、誤解や過誤の源となっている。一般に、符号の規約は1つの次元についての座標系の選択の、特別な場合である。 また「符号の規約」の用語は、虚数単位 i や 2π の因子を含む、より広い意味で用いられることもある。 相対論計量符号相対性理論において、計量符号は (+,−,−,−) か (−,+,+,+) のいずれかである。[注釈 1]それぞれ diag(+1,−1,−1,−1), diag(−1,+1,+1,+1) の計量テンソルに対応する。より高次元の相対性理論においても同様である: (+,−,−,−,…) と (−,+,+,+,…). この符号の規約には幾つかの呼び名がある:
幾つかの著名な院生向けテキストにおける使用例:
曲率リッチテンソル Rμν はリーマンテンソル Rμναβ の縮約として定義されるが、その縮約には次の2通りの取り方がある:
リーマンテンソルの対称性により、この2つの定義は符号だけ異なる。またリーマンテンソルの定義についても符号だけを変える2通りの定義があり、これら2通りずつの定義を協働して用いることで、異なる規約についても同一の物理を与える。 その他の符号の規約
書籍や論文において使用される符号の規約は、冒頭で明示することが慣例となっている。 注釈参考文献
関連項目 |
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve