브랜스-딕 이론브랜스-딕 이론(영어: Brans–Dicke theory)은 일반상대론을 확장하여, 중력상수를 스칼라장으로 승진시켜 얻은, 중력을 다루는 이론이다. 따라서 계량 텐서장과 스칼라장을 동시에 지닌, 이른바 스칼라-텐서 이론이다. 끈이론에서 자연스럽게 유도된다. 역사1961년에 미국의 로버트 헨리 딕과 칼 브랜스(Carl Henry Brans)가 마흐의 원리를 만족하는 중력 이론을 만들기 도입하였다.[1] 수학적 정의여기서 텐서 가 주어졌을 때, 는 의 대각합을 나타낸다. 브랜스-딕 이론의 작용은 다음과 같다. 작용으로부터 다음과 같은 장방정식을 유도할 수 있다. 여기서
즉 첫 번째 식은 스칼라장의 샘마당이 응력-에너지 텐서의 대각합임을 의미한다. (전자기장의 응력-에너지 텐서는 무대각합이므로, 전자기장은 스칼라장에 영향을 미치지 않는다.) 두 번째 식은 아인슈타인 방정식을 스칼라항을 더하여 일반화한 것이다. 끈 이론과의 관계끈 이론에서는 낮은 에너지의 중력에서 자연스럽게 딜라톤을 포함한다. 딜라톤은 인 브랜스-딕 스칼라 와 유사하다.[2] 다만, 딜라톤은 퍼텐셜을 가질 수 있다. 같이 보기각주
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve