칸토어 교점 정리일반위상수학에서 칸토어 교점 정리(Cantor交點定理, 영어: Cantor’s intersection theorem)는 점점 작아지는 (공집합이 아닌) 콤팩트 집합들의 열의 교집합은 공집합이 아니라는 정리이다. 정의위상 공간 속의 콤팩트 닫힌집합들로 구성된 하향 집합 가 주어졌다고 하자. 칸토어 교점 정리에 따르면, 인 것은 인 것과 동치이다.[1]:428, Lemma A.2.2 증명: 은 하향 집합을 이루므로 위 정리가 성립한다. 만약 가 하우스도르프 공간이라면 모든 콤팩트 집합이 닫힌집합이므로, 닫힌집합 가정을 생략할 수 있다. 약간 다른 형태로, 집합 속의 부분 집합들의 족 이 다음 조건을 만족시킨다면 유한 교차성(영어: finite intersection property)을 만족시킨다고 한다.
이로부터 하향 집합에 대한 형태를 쉽게 유도할 수 있다. 차분한 공간호프만-미슬러브 정리로부터, 칸토어 교점 정리의 차분한 공간 형태를 유도할 수 있다. 차분한 공간 속에서, 콤팩트 포화 집합들로 구성된 하향 집합 가 주어졌다고 하자. 그렇다면, 다음이 성립한다.[2]:302, Corollary 2[3]:381, Theorem 2.28 증명: T1 공간의 모든 부분 집합은 포화 집합이다. 따라서, 차분한 T1 공간의 경우 포화 집합 조건을 생략하여도 좋다. 역사게오르크 칸토어가 증명하였다. 칸토어 집합은 이 정리를 사용하여 공집합이 아님을 보일 수 있다. 각주
외부 링크
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve