Algoritmo de Quine-McCluskeyO Algoritmo de Quine–McCluskey (ou método dos implicantes primos) é um método utilizado para minimização de funções booleanas desenvolvido por W.V. Quine e Edward J. McCluskey em 1956. É funcionalmente idêntico ao mapa de Karnaugh, mas a forma tabular o faz mais eficiente para uso em algoritmos computacionais, além de fornecer um algoritmo determinístico para checar se a forma mais simplificada de uma função booleana foi alcançada. O procedimento consiste em 3 etapas:
ComplexidadeEmbora mais prático do que o mapa de Karnaugh ao lidar com mais de 4 variáveis, o algoritmo de Quine-McCluskey também possui limitações devido ao fato de o problema resolvido por ele ser NP-difícil: o tempo de execução do algoritmo de Quine-McCluskey cresce exponencialmente em relação ao número de variáveis. Pode-se mostrar que para uma função de n variáveis o limite superior no número de implicantes primos é 3n/n. Se n = 32 haverá cerca de 5.8 * 1013 implicantes primos. Funções com grande número de variáveis têm de ser simplificadas com heurísticas não-ótimas, das quais o ESPRESSO é considerado um padrão.[1] ExemploEtapa 1: Implicantes primosMinimizando uma função arbitrária: Esta expressão diz que a saída da função f será 1 para os mintermos 4,8,10,11,12 e 15 (denotados por 'm'), além de haver saídas irrelevantes, chamados don't care, definidas pelos minitermos 9 e 14.
Obtemos facilmente a soma de produtos a partir desta tabela, simplesmente somando os mintermos e desprezando os termos don't care: A fórmula acima não está em sua forma mais simplificada. Para encontrar os minitermos primos, primeiro agrupa-se todos os minitermos em uma tabela. Separando em grupos baseado na quantidade de 1's presentes.
Começando pelo primeiro elemento do primeiro grupo da tabela, compare-o com todos os termos do grupo seguinte. Toda vez que que a combinação for possível a menos de um dígito deve-se anotar o código resultante em uma outra tabela, substituindo o dígito divergente pelo sinal -. Toda vez que um termo não possuir combinação deve-se marcá-lo pois este representa um implicante primo. Repete-se o procedimento para cada termo do primeiro grupo. Faça o mesmo para o segundo grupo, comparando seus termos com os termos do terceiro grupo. Depois de realizar o procedimento em toda a tabela. Repita o procedimento para a tabela gerada. O algorítimo continua até que não haja mais combinações possíveis.
Neste exemplo, nenhum dos termos da coluna 3 pôde ser combinado. Se não fosse o caso, o algorítimo continuaria. Etapa 2: Implicantes primos essenciaisUsando os implicantes primos essenciais constrói-se o mapa a seguir. A primeira linha do mapa representa os minitermos envolvidos. A primeira coluna mostra os implicantes primos e quais minitermos ele pode representar. Para definir quais os minitermos cada implicante primo pode representar usa-se o código substituindo o - por 0 e por 1 de forma a gerar todas as combinações possíveis.
Olhando as colunas da tabela observa-se que os implicantes primos são aqueles que possuem apenas um X e uma das colunas. Se um implicante primo é essencial, então será necessário incluí-lo na equação booleana simplificada. Em alguns casos, os implicantes primos essenciais não cobrem todos os minitermos. Nesses casos deve-se adicionar termos não essenciais de forma a cobrir todos os minitermos. Esse procedimento deve visar a menor quantidade possível de adições. Para proceder forma mais analítica pode ser usado o método de Petrick. Neste exemplo podemos combinar os implicantes essenciais com um dos não essenciais para cobrir todos os minitermos e obter uma das equações: Ambas as equações são mínimas e equivalentes à equação inicial: Ver também
Referências
Information related to Algoritmo de Quine-McCluskey |