Na matemática, espiral é uma curva plana que gira em torno de um ponto central (chamado polo), dele se afastando ou se aproximando segundo uma determinada lei.[1] Quando se volta para a direita é chamada de dextrogira e para a esquerda de sinistrogira ou levogira.
Espirais bidimensionais
Uma espiral bidimensional pode ser descrita usando coordenadas polares dizendo que o raior é uma função contínua e monotônica do ângulo. O círculo seria considerado como um caso degenerativo (a função não é estritamente monotônica, mas sim constante).
Algumas das espirais bidimensionais mais importantes são:
Uma espiral esférica é a curva na esfera traçada por um navio viajando de um pólo ao outro enquanto mantém um ângulo fixo, mas não reto, em relação aos meridianos de longitude, isto é, mantendo a mesma inclinação de deslocamento. A curva tem um número infinito de revoluções orbitais, com a distância entre elas diminuindo com as aproximação da curva a qualquer um dos polos.
Em navegação esta linha chama-se loxodromia.
Espirais policêntricas
As espirais policêntricas são curvas que se parecem com espirais, mas que não possuem um ponto central. São tidas como falsas espirais.
Publicações relacionadas
Cook, T., 1903. Spirals in nature and art. Nature 68 (1761), 296.
Cook, T., 1979. The curves of life. Dover, New York.
Habib, Z., Sakai, M., 2005. Spiral transition curves and their applications. Scientiae Mathematicae Japonicae 61 (2), 195 – 206.
Dimulyo, S., Habib, Z., Sakai, M., 2009. Fair cubic transition between two circles with one circle inside or tangent to the other. Numerical Algorithms 51, 461–476 [1].
Harary, G., Tal, A., 2011. The natural 3D spiral. Computer Graphics Forum 30 (2), 237 – 246 [2].
Xu, L., Mould, D., 2009. Magnetic curves: curvature-controlled aesthetic curves using magnetic fields. In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association [3].
A. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data. Computer Aided Geometric Design, 27(3), 262-280, 2010 [5].
A. Kurnosenko. Two-point G2 Hermite interpolation with spirals by inversion of hyperbola. Computer Aided Geometric Design, 27(6), 474-481, 2010.
Miura, K.T., 2006. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design and Applications 3 (1–4), 457–464 [6].
Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. Derivation of a general formula of aesthetic curves. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp. 166 – 171 [7].
Meek, D., Walton, D., 1989. The use of Cornu spirals in drawing planar curves of controlled curvature. Journal of Computational and Applied Mathematics 25 (1), 69–78 [8].
Farin, G., 2006. Class A Bézier curves. Computer Aided Geometric Design 23 (7), 573–581 [9].
Yoshida, N., Saito, T., 2007. Quasi-aesthetic curves in rational cubic Bézier forms. Computer-Aided Design and Applications 4 (9–10), 477–486 [11].
Ziatdinov, R., Yoshida, N., Kim, T., 2012. Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Computer Aided Geometric Design 29 (2), 129 – 140 [12].
Ziatdinov, R., Yoshida, N., Kim, T., 2012. Fitting G2 multispiral transition curve joining two straight lines, Computer-Aided Design 44(6), 591–596 [13].
Ziatdinov, R., 2012. Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Computer Aided Geometric Design 29(7): 510-518 [14].
Ziatdinov, R., Miura K.T., 2012. On the Variety of Planar Spirals and Their Applications in Computer Aided Design. European Researcher 27(8-2), 1227-1232 [15].