Lei da probabilidade total
Em teoria das probabilidades, a lei da probabilidade total é uma regra fundamental que relaciona probabilidades marginais e probabilidades condicionais. Ela expressa a probabilidade total de um resultado que pode ser realizado através de vários eventos distintos. Expressão FormalA lei da probabilidade total[1] é a proposição de que se é uma partição finita ou infinita contável de um espaço amostral, i.e. um conjunto de eventos disjuntos pares cuja união é todo o espaço da amostra, e cada evento Bn é mensurável, então, para qualquer evento A do mesmo espaço de probabilidade: ou, alternativamente,[1] onde, para qualquer para que estes termos são omitidos na soma, pois é finito. A soma pode ser interpretada como uma média ponderada e, por isso, a probabilidade marginal pode ser chamada de "probabilidade média" ("average probability", em inglês).[2] A lei da probabilidade total também pode ser indicada para probabilidades condicionais. Tomando o mesmo acima, e assumindo que é um evento independente com qualquer dos eventos de : Expressão InformalA expressão matemática acima pode ser interpretada da seguinte forma: "Dado um resultado , com probabilidades condicionais conhecidas dado qualquer evento de , cada um com sua probabilidade, qual é a probabilidade total de que vai acontecer?". A resposta para esta questão é . ExemploSuponha que duas fábricas forneçam lâmpadas para o mercado. As lâmpadas da fábrica X trabalham por mais de 5 000 horas em 99% dos casos, enquanto as lâmpadas de Y trabalham por mais de 5 000 horas em 95% dos casos. Sabe-se que a fábrica X fornece 60% das lâmpadas. Qual é a chance de que a lâmpada comprada irá funcionar por mais de 5 000 horas? Aplicando a lei da probabilidade total, nós temos: , onde
Assim, cada lâmpada comprada tem uma chance de 97,4% para o trabalho por mais de 5 000 horas. AplicaçõesUma aplicação comum da lei é o lugar onde os eventos coincidem com uma variável aleatória discreta X tomando cada valor em sua faixa, ou seja, é o evento . Segue-se que a probabilidade do evento A é igual ao valor esperado das probabilidades condicionais de um dado . Isto é, em que é a probabilidade condicional de um dado valor da variável aleatória X. Esta probabilidade condicional é uma variável aleatória cujo valor depende de X. A probabilidade condicional é simplesmente uma probabilidade condicional de um evento, [X = x]. Sendo uma função de x, por exemplo . Então a probabilidade condicional Pr(A|X) é g(x), portanto, uma variável aleatória. Esta versão da lei da probabilidade total diz que o valor esperado da variável aleatória é o mesmo que Pr(A). Este resultado pode ser generalizado para variáveis aleatórias contínuas, e a expressão se torna onde denota a sigma-álgebra gerada pela variável aleatória X. Outros NomesO termo lei da probabilidade total também é conhecido como lei das alternativas, que é um caso especial da lei da probabilidade total aplicado à variáveis aleatórias discretas. Um autor ainda utiliza a terminologia "lei contínua de alternativas", no caso contínuo.[3] Este resultado é dado por Geoffrey Grimmett e Welsh[4] como o teorema de partição, um nome que eles também dão à lei de expectativa total. Ver também
Referências
|