Se e somente se
Se e somente se, ou se e só se (abreviado, sse), em matemática, lógica e filosofia, é uma forma de expressão para um teorema: Se A então B, e se B então A; ou A se e somente se B. O correspondente símbolo lógico é ConsideraçõesSeja a afirmação: Existem maneiras concisas de expressar afirmações da forma A implica B e B implica A, nas quais não é necessário descrever as condições de A e B duas vezes cada uma. A expressão-chave para tais formas é se e somente se.
Sobre as condições de A e B, elas podem ser, cada uma delas, verdadeira ou falsa, havendo assim, quatro possibilidades. Se a afirmação A se e somente se B é verdadeira, temos:
É impossível a condição A ser verdadeira quando B é falsa, porque A B. da mesma forma, é impossível a condição B ser verdadeira quando A é falsa, porque B A. Assim as duas condições A e B devem ser ambas verdadeiras ou ambas falsas. No exemplo acima a condição A é x é par e a condição B é x + 1 é ímpar. Para alguns inteiros (por exemplo, x = 6) A e B são ambas verdadeiras (6 é par e 7 é impar), mas para outros inteiros (x = 9), ambas as condições são falsas (9 não é par e 10 não é ímpar). Alternativas
Ver tambémBibliografia
Information related to Se e somente se |