Transformada integralEm matemática, uma transformada integral é qualquer transformação linear T da seguinte forma: A entrada desta transformada é uma função f, e o resultado é outra função Tf. Uma transformada integral é uma espécie particular de operadores matemáticos. Em geral, cada transformada integral corresponde a uma diferente escolha da função K, que é chamada de kernel (ou núcleo) da transformada, e dos limites de integração e . A conveniência de cada transformada depende do tipo de problema abordado. Por exemplo, a Transformada de Laplace costuma ser mais conveniente para problemas com dependência temporal e a Transformada de Fourier mais conveniente para problemas com dependência espacial. AplicabilidadeA metodologia da transformada integral é uma entre as metodologias de grande valia empregadas na busca de soluções para equações diferenciais não triviais. Esta metodologia consiste em aplicar uma transformada integral específica a um determinado problema, reduzindo-o a um problema, em geral, mais simples de ser resolvido. Resolve-se o problema transformado e recupera-se a solução do problema original através da respectiva transformada inversa. Constitui ferramenta de suma relevância em áreas envolvendo ciências naturais e tecnologia. Em um caso típico, durante a análise de circuitos, a transformada de Fourier permite que um dado sinal inicialmente expresso no domínio do tempo seja adequadamente transcrito para o domínio da frequência, fornecendo o espectro correspondente e permitindo, por exemplo, a compreensão dos filtros passa-faixa eletrônicos utilizados na separação de estações distintas nos rádios de difusão e nos transceptores. A técnica de ressonância magnetonuclear emprega também transformadas integrais tridimensionais, a fim de, a partir do sinal coletado durante o exame, gerar a imagem direta do órgão, tecido ou objeto em foco. Sem tal recurso, geralmente levado a cabo em um computador, não se poderia obter as imagens características do exame, cujo princípio de funcionamento difere bastante de uma simples radiografia. Como mais um exemplo, no estudo, projeto e manutenção de controladores proporcionais integrais derivativos (PID), empregados para controlar motores de servomecanismos específicos ou em plantas industriais as mais variadas - a exemplo na indústria automobilística - a transformada de Laplace mostra-se indispensável; e da mesma forma, cada uma das demais transformadas integrais é de grande valia em áreas que abarquem problemas modelados por equações diferenciais, cujas soluções atrelam-se às soluções físicas ou práticas almejadas ou observadas. Constituem valiosas ferramentas sobretudo para a física e engenharia. Tabela
Apesar de as propriedades das transformadas integrais variarem muito, elas têm algumas propriedades em comum. Por exemplo, qualquer transformada integral é um operador linear, uma vez que o integral é um operador linear e na verdade caso o kernel seja permitido ser uma função generalizada, então todos os operadores lineares são transformadas integrais (o teorema kernel de Schwartz é uma versão formalizada desta afirmação). Núcleo da transformadaEm análise matemática, considere-se uma transformada integral T que transforma uma função f numa função Tf dada pela fórmula A função k(x,y) que aparece nesta fórmula é o núcleo (em inglês: kernel) do operador linear T. Alguns núcleos possuem núcleos inversos onde (rigorosamente falando) rendem transformações inversas: Um núcleo simétrico é um núcleo em que as duas variáveis são permutáveis. Hankel demonstrou que núcleos simétricos tais que e podem ser gerados a partir das expressões ou O caso especial ν = 0 leva diretamente à Transformada de Hankel de ordem 0. O caso especial ν = ±½ leva aos núcleos 2cos(2πut) e 2sen(2πut), que estão relacionados à transformada de Hartley.[1] Em geral, os núcleos são famílias de funções ortogonais, ou ainda, ortonormais. A Transformada de Karhunen-LoèveAs transformadas listadas na tabela acima possuem um núcleo bem definido. Uma transformada integral que não possui essa característica é transformada de Karhunen-Loève (KLT, do inglês Karhunen-Loève transform); neste caso, a base ortogonal usada no núcleo varia com a função a ser transformada. A KLT é importante do ponto de vista teórico porque demonstra-se que ela é ótima sob vários aspectos importantes para o processamento digital de sinais.[2] HistóriaHistoricamente, a origem das transformadas integrais remonta ao trabalho de Laplace sobre a teoria da probabilidade, La Théorie Analytique des Probabilities, na década de 1780. Nesse livro aparece a transformada de Laplace, que é, assim, a transformada mais antiga de todas. O próximo evento importante foi o tratado de Fourier, La Théorie Analytique de la Chaleur, de 1822. Nesse livro aparece o teorema integral de Fourier, bem como as séries e integrais de Fourier, e suas aplicações. Alguns dos resultados de Fourier já eram conhecidos por Laplace, Cauchy e Poisson. Décadas depois, Heaviside utilizou a transformada de Laplace com sucesso na solução de equações diferenciais ordinárias e parciais relacionadas à análise de circuitos elétricos. Heaviside lançou mão também da idéia do uso de símbolos operadores, lançada por Leibniz e desenvolvida por depois por Lagrange e Laplace, e unindo essas técnicas, criou o que se conhece hoje como cálculo operacional, em seu artigo On Operational Methods in Physical Mathematics, em duas partes, publicadas em 1892 e 1893, e em seu livro Electromagnetic Theory, de 1899. Apesar do sucesso na aplicação prática, o trabalho de Heaviside foi muito criticado pelos matemáticos por falta de provas rigorosas que justificassem alguns dos seus métodos heurísticos. Assim, seguiu-se um esforço para fornecer tais provas. Bromwich conseguiu provar alguns teoremas por meio da teoria das funções complexas. Seguiram-se as contribuições de Carson, van der Pol e Doetsch, entre outros. Outras transformações integrais foram introduzidas por Mellin (a transformada de Mellin, já parcialmente conhecida por Riemann), Hankel (a transformada homônima), Hilbert (a transformada de Hilbert, desenvolvida por Hardy e Titchmarsh), Stieltjes (a transformada homônima), Radon (a transformada homônima) e outros. O estudo das transformadas integrais é intenso atualmente e novas transformações importantes foram descobertas recentemente, como é o caso da transformada de wavelet, enunciada por Morlet em 1982.[3] Notas e referências
Ver tambémReferências
|