Например, если алфавит задан как , а язык включает в себя все слова над ним, то слово принадлежит . Пустое слово (то есть строка нулевой длины) допускается и часто обозначается как , или .
Некоторые операции могут быть использованы для того, чтобы порождать новые языки из данных. Предположим, что и являются языками, определёнными над некоторым общим алфавитом.
Конкатенация (сцепление) содержит все слова, удовлетворяющие форме , где — это слово из , а — слово из .
Пересечение содержит все слова, содержащиеся и в , и в .
Объединение содержит все слова, содержащиеся в или в .
Дополнение языка содержит все слова алфавита, которые не содержатся в .
Правое отношение содержит все слова , для которых существует слово в такое, что находилось в .
Замыкание Клини содержит все слова, которые могут быть записаны в форме , где содержится в и . Следует помнить, что это включает и пустое слово , так как допустимо по условию.
Обращение содержит обращённые слова из .
Смешение и содержит все слова, которые могут быть записаны в форме , где и являются такими словами, что связь находится в , а являются такими словами, что находятся в .
История
В XVII веке Готфрид Лейбниц представил и описал идею о «characteristica universalis» — универсальном и формальном языке, использующем пиктограммы. В этот период Карл Фридрих Гаусс также занимался проблемой нотацией Гаусса[1].
Готлоб Фреге попытался воплотить идеи Лейбница в системе обозначений, которая была впервые описана в его работе «Begriffsschrift[нем.]» (1879) и более полно разработана в двухтомнике «Grundgesetze der Arithmetik[нем.]» (1893/1903). Эта система описывала «формальный язык чистой логики»[2].
В первой половине XX века были сделаны несколько разработок, имеющих отношение к формальным языкам. Аксель Туэ опубликовал четыре статьи, связанные с понятиями слов и языка, между 1906 и 1914 годами. В последней из них были представлены теории, которые Эмиль Пост позже назвал системами Туэ, и дал первый пример неразрешимой проблемы — проблемы равенства для полугрупп[3]. Пост позже использовал эту статью в своем доказательстве в 1947 году «о том, что проблема слов для полугрупп является рекурсивно неразрешимой»[4], а также разработал каноническую систему для создания формальных языков.
↑Martin Davis. Influences of Mathematical Logic on Computer Science // The universal Turing machine: a half-century survey / Rolf Herken. — Springer, 1995. — P. 290. — ISBN 978-3-211-82637-9.
Кревский И. Г., Селивёрстов М. Н., Григорьева К. В. Формальные языки, грамматики и основы построения трансляторов: Учебное пособие / Под ред. А. М. Бершадского. — Пенза: Изд-во Пенз. гос. ун-та, 2002. — 124 с.
Мартыненко Б. К. Языки и трансляции: Учебное пособие. — СПб.: Издательство С.-Петербургского университета, 2003. — 235 с.
Пентус А. Е., Пентус М. Р. Математическая теория формальных языков. — М.: Интернет-университет информационных технологий, Бином. Лаборатория знаний, 2006. — 248 с.