CKM-матрицаCKM-ма́трица, ма́трица Каби́ббо — Кобая́си — Маска́вы (ККМ-матрица, матрица смешивания кварков, иногда раньше называлась KM-матрица) в Стандартной модели физики элементарных частиц — унитарная матрица, которая содержит информацию о силе слабых взаимодействий, изменяющих аромат. Технически, она определяет преобразование между двумя базисами квантовых состояний: состояниями свободно движущихся кварков (то есть их массовыми состояниями) и состояниями кварков, участвующих в слабых взаимодействиях. Она важна также для понимания нарушения CP-симметрии. Точное математическое определение этой матрицы дано в статье по основам Стандартной модели. Эта матрица была предложена для трёх поколений кварков японскими физиками Макото Кобаяси и Тосихидэ Маскава, которые добавили одно поколение к матрице, ранее предложенной Николой Кабиббо. МатрицаСлева мы видим CKM-матрицу вместе с вектором сильных собственных состояний кварков, а справа имеем слабые собственные состояния кварков. ККМ-матрица описывает вероятность перехода от одного кварка q к другому кварку q' . Эта вероятность пропорциональна Величины значений в матрице были установлены экспериментально и равны приблизительно[1]: Таким образом, CKM-матрица довольно близка к единичной матрице. ПодсчётЧтобы идти дальше, необходимо подсчитать количество параметров в этой матрице V, которые проявляются в экспериментах и, следовательно, физически важны. Если есть N поколений кварков (2N ароматов), то
Если число поколений кварков N = 2 (исторически такой была первая версия CKM-матрицы, когда были известны только два поколения), есть только один параметр — угол смешивания между двумя поколениями кварков. Он называется угол Кабиббо в честь Николы Кабиббо. В Стандартной модели N = 3, следовательно, есть три угла смешивания и одна комплексная фаза, нарушающая CP-симметрию. Наблюдения и предсказанияИдея Кабиббо появилась из-за необходимости объяснения двух наблюдаемых явлений:
Решение Кабиббо состояло в постулировании универсальности слабых переходов, чтобы решить проблему 1, и угла смешивания θc (теперь называемого углом Кабиббо) между d- и s-кварками, чтобы решить проблему 2. Для двух поколений кварков нет нарушающей CP-симметрию фазы, как было показано выше. Поскольку нарушение CP-симметрии наблюдалось в распадах нейтральных каонов уже в 1964 году, появление немногим позже Стандартной модели было ясным сигналом о третьем поколении кварков, как было указано в 1973 году Кобаяси и Маскавой. Открытие b-кварка в Фермилабе (группой Леона Ледермана) в 1977 году немедленно привело к началу поисков ещё одного кварка третьего поколения — t-кварка. Универсальность слабых переходовОграничение по унитарности CKM-матрицы для диагональных компонент может быть записано как для всех поколений i. Это предполагает, что сумма всех связей кварка u-типа со всеми кварками d-типа одинакова для всех поколений. Никола Кабиббо в 1967 году назвал это соотношение слабой универсальностью. Теоретически, это следствие того факта, что все дублеты SU(2) взаимодействуют с векторными бозонами слабых взаимодействий с одинаковой константой связи. Это подтверждено во многих экспериментах. Треугольники унитарностиОставшиеся ограничения по унитарности ККМ-матрицы могут быть записаны в форме Для любых фиксированных и различных i и j это ограничение накладывается на три комплексных числа, одно для каждого k, что означает, что эти числа являются вершинами треугольника на комплексной плоскости. Существует шесть вариантов i и j, поэтому и шесть таких треугольников, каждый из которых называется треугольником унитарности. Их формы могут быть очень разными, но они все имеют одинаковую площадь, которую можно отнести к нарушающей CP-симметрию фазе. Площадь исчезает для специфических параметров в Стандартной модели, для которых нет нарушения CP-симметрии. Ориентация треугольников зависит от фаз кварковых полей. Поскольку как три стороны, как и три угла каждого треугольника могут быть измерены в прямых экспериментах, проводится серия тестов для проверки замкнутости треугольников. Это задача для таких экспериментов, как японский BELLE, калифорнийский BaBar и эксперимент LHCb проекта LHC. ПараметризацииДля полного задания CKM-матрицы требуется четыре независимых параметра. Было предложено множество параметризаций, но наиболее популярны три. KM-параметрыИзначально параметризация Кобаяси и Маскавы использовала три угла (θ1, θ2, θ3) и фазу CP-нарушения (δ). где θ1 — угол Кабиббо, ci и si — соответственно косинус и синус угла θi. «Стандартные» параметры«Стандартная» параметризация CKM-матрицы использует три угла Эйлера (θ12, θ23, θ13) и фазу CP-нарушения (δ)[2]. Смешивание между поколениями кварков i и j исчезает, если угол смешивания θij стремится к нулю. Здесь θ12 — угол Кабиббо, cij и sij — соответственно косинус и синус угла θij. На текущий момент наиболее точные значения стандартных параметров[3][4]:
Параметры ВольфенштейнаТретья параметризация CKM-матрицы, введёна Линкольном Вольфенштейном, использует параметры λ, A, ρ и η[5]. Параметры Вольфенштейна являются числами порядка единицы и связаны со «стандартной» параметризацией следующими соотношениями:
Параметризация Вольфенштейна CKM-матрицы является аппроксимацией «стандартной» параметризации. Если ограничиться членами разложения до порядка λ3, она может быть представлена следующим образом: CP-нарушение может быть определено измерением ρ − iη. Используя значения из предыдущего подраздела, можно получить следующие значения параметров Вольфенштейна[4]:
См. также
Примечания
Ссылки
|