PMNS-матрицаPMNS-матрица (матрица Понтекорво — Маки — Накагавы — Сакаты) — унитарная матрица смешивания нейтрино в физике элементарных частиц, аналогичная CKM-матрице смешивания кварков, получила своё название в честь Б. М. Понтекорво, в 1957 году впервые рассмотревшего смешивание нейтрино, и З. Маки, М. Накагавы и С. Сакаты, сделавших это в 1962 году.[1][2][3][4] Эта матрица содержит в себе информацию, насколько отличаются собственные квантовые состояния нейтрино относительно лагранжианов свободного распространения (см. лагранжиан Дирака) и слабого взаимодействия. Недиагональные матричные элементы описывают осцилляции нейтрино, то есть переходы между разными состояниями. МатрицаДля трёх поколений лептонов матрица записывается в следующем виде: где слева приведены поля нейтрино, участвующие в слабом взаимодействии, а справа — PMNS-матрица, умноженная на вектор полей нейтрино после диагонализации массовой матрицы нейтрино. PMNS-матрица содержит амплитуду вероятности перехода данного аромата α в массовое собственное состояние i. Эти вероятности пропорциональны |Uαi|². Как правило, используется следующая параметризация матрицы[5]: где cij = cos θij и sij = sin θij. Три угла смешивания θ12, θ13 и θ23 лежат в диапазоне от 0 до π/2 и описывают смешивание между тремя массовыми компонентами нейтрино. Из-за трудностей детектирования нейтрино определение значения коэффициентов значительно сложнее, чем аналогичной матрицы смешивания кварков (CKM-матрица). В 2012 году сообщались следующие значения коэффициентов:[6]
CP-нарушающие фазыМножитель δ — так называемая СР-нарушающая фаза Дирака, она вводится в рассмотрение в случае, если нейтрино являются дираковскими частицами. Если δ отлична от 0 или π, смешивание нейтрино будет происходить с нарушением СР-инвариантности. Таким образом, введение δ отражает один из возможных механизмов СР-нарушения в лептонном секторе. В общем случае смешивания между n активными и n массовыми состояниями нейтрино, матрица смешивания (размера n X n) будет содержать (n-1)(n-2)/2 независимых дираковских фаз. Множители αi — это СР-нарушающие фазы Майораны, они вводятся в рассмотрение в случае, если нейтрино являются майорановскими частицами. Майорановские фазы сохраняют СР-чётность, если αi=π qi, qi=0,1,2. В этом случае уравнение = ±1 имеет простой физический смысл: это относительная СР-чётность майорановских нейтрино и . В общем случае смешивания между n активными и n массовыми состояниями нейтрино имеется n-1 независимых майорановских фаз. Майорановские фазы могут быть обнаружены, например, при изучении скорости двойного безнейтринного бета-распада, который может происходить с участием майорановских нейтрино. В настоящее время неизвестно, являются ли нейтрино истинно дираковскими, истинно майорановскими или суперпозицией дираковских и майорановских состояний. Другие параметризацииНаряду со стандартной 3-ароматовой схемой смешивания изучаются также другие варианты, например, схемы с добавлением одного или более стерильного нейтрино. Вместо PMNS-матрицы будем иметь в этом случае унитарную 4×4 матрицу смешивания, которая может быть параметризована как произведение 6 матриц поворота (6 эйлеровских углов) и (в общем случае) 3 дираковских и 5 майорановских фаз. Существуют также другие параметризации этой матрицы[7]. Примечания
См. также
Ссылки
|