จำนวนสมบูรณ์จำนวนสมบูรณ์ (อังกฤษ: perfect number) คือ จำนวนเต็มที่มีผลบวกของตัวหารแท้ เท่ากับตัวมันเอง หก (6) เป็นจำนวนสมบูรณ์ตัวแรก เพราะว่า 6 มีตัวหารแท้คือ 1, 2, 3 และ 1 + 2 + 3 = 6 จำนวนสมบูรณ์ตัวถัดไปคือ 28 = 1 + 2 + 4 + 7 + 14 จำนวนสมบูรณ์ตัวถัดไปอีกคือ 496 และ 8128 (ลำดับ A000396) จำนวนสมบูรณ์สี่ตัวแรกนั้นถูกค้นพบโดยชาวกรีกโบราณ จำนวนสมบูรณ์คู่ยุคลิดได้ค้นพบว่า จำนวนสมบูรณ์สี่ตัวแรกนั้นสามารถหาโดยใช้สูตร 2n−1(2n − 1) ได้
สังเกตว่าในแต่ละตัวอย่างที่ยกมา 2n − 1 จะเป็นจำนวนเฉพาะเท่านั้น ยุคลิดได้พิสูจน์ว่า ถ้า 2n − 1 เป็นจำนวนเฉพาะแล้ว สูตร 2n−1(2n − 1) จะให้ผลลัพธ์เป็นจำนวนสมบูรณ์คู่เสมอ นักคณิตศาสตร์สมัยก่อน ได้ตั้งสมมติฐานเกี่ยวกับจำนวนสมบูรณ์จากจำนวนสมบูรณ์ที่เขารู้เพียง 4 ตัว ซึ่งสมมติฐานที่เขาได้ตั้งส่วนใหญ่จะผิด เช่น สมมติฐานที่ว่า เพราะว่า n = 2, 3, 5, 7 เป็นจำนวนเฉพาะ 4 ตัวแรก ที่นำไปแทนในสูตรแล้วได้ผลลัพธ์เป็นจำนวนสมบูรณ์ ดังนั้น n = 11 ซึ่งเป็นจำนวนเฉพาะตัวที่ 5 จะทำให้ได้ผลลัพธ์เป็นจำนวนสมบูรณ์เช่นกัน อย่างไรก็ตาม 211 − 1 = 2047 = 23 · 89 ซึ่งไม่เป็นจำนวนเฉพาะ ดังนั้น สมมติฐานนี้จึงผิด สมมติฐานที่ผิดอีกสองข้อ ได้แก่
จำนวนสมบูรณ์ตัวที่ห้า () มี 8 หลัก ดังนั้นสมมติฐานข้อแรกจึงผิด. สำหรับสมมติฐานข้อสองนั้น แม้ว่าจำนวนสมบูรณ์ตัวที่ห้า จะลงท้ายด้วยเลข 6 แต่จำนวนสมบูรณ์ตัวที่หก (8 589 869 056) ไม่ได้ลงท้ายด้วยเลข 8 สมมติฐานข้อสองจึงผิด. เราสามารถพิสูจน์ได้ว่าจำนวนสมบูรณ์จะมีเลขหลักสุดท้ายเป็น 6 หรือ 8 เสมอ (แต่ไม่จำเป็นต้องสลับกัน) คุณสมบัติของจำนวนสมบูรณ์อันหนึ่งที่น่าสนใจก็คือ ส่วนกลับของตัวประกอบของจำนวนสมบูรณ์ จะรวมกันได้ 2 เสมอ เช่น
จำนวนสมบูรณ์คี่ยังไม่มีใครรู้ว่าจำนวนสมบูรณ์คี่นั้นมีอยู่จริงหรือไม่ เมื่อไม่นานมานี้ Carl Pomerance และ Joshua Zelinsky ได้แสดงฮิวริสติกว่าไม่มีจำนวนสมบูรณ์คี่อยู่จริง สมมติว่ามีจำนวนสมบูรณ์คี่ N อยู่จริงแล้ว มันจะต้องมีคุณสมบัติต่อไปนี้
อ้างอิง
|