Share to:

 

อนุกรม

ในทางคณิตศาสตร์ อนุกรม (อังกฤษ: series) คือผลจากการบวกสมาชิกทุกตัวของลำดับไม่จำกัดเข้าด้วยกัน หากกำหนดให้ลำดับของจำนวนเป็น อนุกรมของลำดับนี้ก็คือ อนุกรมสามารถเขียนแทนได้ด้วยสัญลักษณ์ของผลรวม ∑ เช่นตัวอย่างนี้เป็นอนุกรมของลำดับ

พจน์ของอนุกรมมักถูกสร้างขึ้นโดยกฎเกณฑ์เฉพาะ เช่นโดยสูตรคณิตศาสตร์ ขั้นตอนวิธี ลำดับของการวัด หรือแม้แต่การสุ่มจำนวน และเนื่องจากพจน์ในอนุกรมมีจำนวนไม่จำกัด อนุกรมจึงอาจเรียกว่าเป็น อนุกรมไม่จำกัด หรือ อนุกรมอนันต์(infinite series) อนุกรมจำเป็นต้องมีเครื่องมือจากคณิตวิเคราะห์เพื่อที่จะทำความเข้าใจและเพื่อให้สามารถจัดการปรับแต่งได้ ไม่เหมือนกับผลรวมที่มีพจน์จำกัด นอกเหนือจากการใช้งานทั่วไปในคณิตศาสตร์ อนุกรมไม่จำกัดยังถูกใช้งานอย่างกว้างขวางในสาขาวิชาเชิงปริมาณ ตัวอย่างเช่นฟิสิกส์หรือวิทยาการคอมพิวเตอร์

สมบัติพื้นฐาน

อนุกรมสามารถสร้างขึ้นได้จากเซตหลายประเภทรวมทั้งจำนวนจริง จำนวนเชิงซ้อน ฟังก์ชัน ฯลฯ นิยามต่อไปนี้จะถูกกำหนดบนจำนวนจริง แต่ก็สามารถทำให้เป็นกรณีทั่วไปได้

กำหนดให้ลำดับไม่จำกัดของจำนวนจริง เรานิยามให้

เราเรียก ว่าเป็น ผลรวมบางส่วน N พจน์ ของลำดับ ของ อนุกรมคือลำดับของผลรวมบางส่วนเข้าด้วยกัน

ความสับสนที่อาจเกิดขึ้น

เมื่อพูดถึงอนุกรม เราอาจหมายถึงลำดับ ของผลรวมบางส่วน หรือหมายถึง ผลรวมของอนุกรม อย่างใดอย่างหนึ่ง ขึ้นอยู่กับบริบท

เพื่อที่จะแยกแยะความแตกต่างของทั้งสองความหมายนี้ จึงมีการซ่อนขอบเขตบนและล่างเครื่องหมายผลรวม เช่น

หมายถึงผลรวมของอนุกรม ซึ่งอาจจะมีหรือไม่มีผลรวมจริงๆ ก็ได้

อนุกรมลู่เข้าและลู่ออก

อนุกรม ∑ จะเรียกว่า ลู่เข้า (converge) เมื่อลำดับ ของผลรวมบางส่วนมีลิมิตที่ไม่เป็นอนันต์ แต่ถ้าลิมิตของ เป็นอนันต์หรือไม่มีลิมิต อนุกรมนั้นจะเรียกว่า ลู่ออก (diverge) และเมื่อผลรวมบางส่วนมีลิมิต เราเรียกลิมิตนั้นว่าเป็น ผลรวมของอนุกรม

วิธีที่ง่ายที่สุดที่จะทำให้อนุกรมไม่จำกัดเป็นอนุกรมลู่เข้า นั่นคือ ทุกพจน์มีค่าเป็นศูนย์ ซึ่งสังเกตได้จากผลรวมบางส่วนของอนุกรม ส่วนการลู่เข้าของอนุกรมที่พจน์ต่างๆ ไม่เป็นศูนย์ เป็นสาระสำคัญของการศึกษาอนุกรม ลองพิจารณาตัวอย่างนี้

อนุกรมนี้อาจ มองว่า เป็นอนุกรมลู่เข้าบนเส้นจำนวนจริง เราอาจจินตนาการถึงเส้นตรงยาว 2 หน่วย และมีขีดกำกับแบ่งครึ่งไว้ที่ความยาว 1 หน่วย, ½ หน่วย, ¼ หน่วย ฯลฯ ซึ่งเราจะมีที่ว่างเสมอสำหรับขีดกำกับครั้งถัดไป เพราะว่าความยาวของเส้นที่เหลือจะยังคงมีอยู่เหมือนกับขีดกำกับก่อนหน้า เช่น เมื่อกำกับขีดไว้ที่ ½ หน่วย ก็ยังคงเหลือที่ว่างอีก ½ หน่วยที่ยังไม่มีขีด ดังนั้นเราจึงสามารถขีดกำกับที่ ¼ หน่วยลงไปได้อีก เช่นนี้เรื่อยไป คำอธิบายข้างต้นมิได้เป็นข้อพิสูจน์ว่าผลรวมดังกล่าว เท่ากับ 2 (ถึงแม้ว่าจะเป็นเช่นนั้น) แต่เป็นการพิสูจน์ว่าผลรวมนั้นมีค่า มากที่สุด คือ 2 หรือกล่าวอีกทางหนึ่งคือ อนุกรมนี้มีขอบเขตบนที่ 2

นักคณิตศาสตร์ได้นำวิธีเดียวกันนี้ไปใช้อธิบายสิ่งอื่นๆ เป็นแนวความคิดแบบอนุกรม เช่นเมื่อเราพูดถึงทศนิยมซ้ำจำนวนนี้

เหมือนว่าเรากำลังพูดถึงอนุกรม แต่เมื่ออนุกรมเหล่านี้ลู่เข้าบนจำนวนจริงเสมอ การอธิบายอนุกรมก็เหมือนกับการอธิบายค่าที่แท้จริงของจำนวนนั้น (ดูเพิ่มที่ 0.999...)

ตัวอย่างอนุกรม

และโดยทั่วไป อนุกรมเรขาคณิต

จะเป็นอนุกรมลู่เข้าก็ต่อเมื่อ

อนุกรมฮาร์มอนิกเป็นอนุกรมลู่ออก

  • สำหรับอนุกรมนี้

จะเป็นอนุกรมลู่เข้าเมื่อ r > 1 และเป็นอนุกรมลู่ออกเมื่อ r ≤ 1 ในฐานะฟังก์ชันของ r ผลรวมของอนุกรมนี้คือฟังก์ชันซีตาของรีมันน์

จะเป็นอนุกรมลู่เข้า ถ้าลำดับ ลู่เข้าไปยังขอบเขต L ค่าหนึ่ง เมื่อ n มีค่าเข้าใกล้อนันต์ และค่าของอนุกรมนี้จะเท่ากับ

สมบัติอื่น ๆ

อนุกรมมิได้ถูกแบ่งเพียงว่าจะลู่เข้าหรือลู่ออก อนุกรมยังสามารถแบ่งออกไปได้โดยขึ้นอยู่กับสมบัติของพจน์ (ลู่เข้าสัมบูรณ์หรือลู่เข้าตามเงื่อนไข) ประเภทของการลู่เข้าของอนุกรม (ลู่เข้ารายจุดหรือลู่เข้าสม่ำเสมอ) ประเภทของพจน์ (ไม่ว่าจะเป็นจำนวนจริง ลำดับเรขาคณิต ฟังก์ชันตรีโกณมิติ) และอื่นๆ อีกมากมาย

พจน์ที่ไม่เป็นลบ

เมื่อ เป็นจำนวนจริงที่ไม่เป็นลบสำหรับทุกค่าของ n ดังนั้นลำดับ ของผลรวมบางส่วนจึงมีค่าที่ไม่ลดลง อนุกรม ∑ ซึ่งพจน์ไม่เป็นลบจะลู่เข้าก็ต่อเมื่อลำดับ ของผลรวมบางส่วนถูกจำกัดขอบเขต

ตัวอย่างเช่น กำหนดให้

เป็นอนุกรมลู่เข้า เนื่องจากอสมการ

และผลรวมเทเลสโคปทำให้สามารถสรุปได้ว่า ผลรวมบางส่วนถูกจำกัดขอบเขตไว้ที่ 2

กำหนดให้อนุกรมหนึ่ง

จะเรียกว่าลู่เข้าสัมบูรณ์ ถ้าหากอนุกรมของค่าสัมบูรณ์

ลู่เข้าค่าใดค่าหนึ่งด้วย ซึ่งเป็นค่าเดียวกันกับอนุกรมแรก

อนุกรมจะเรียกว่าลู่เข้าตามเงื่อนไข (หรือกึ่งลู่เข้า) ถ้าอนุกรมนั้นลู่เข้า แต่ไม่ได้ลู่เข้าสัมบูรณ์ ตัวอย่างที่เห็นได้ชัดคืออนุกรมสลับเครื่องหมาย เช่น

เป็นอนุกรมลู่เข้า (และมีผลรวมเท่ากับ ln 2) แต่อนุกรมของค่าสัมบูรณ์กลายเป็นอนุกรมฮาร์มอนิกซึ่งลู่ออก ทฤษฎีบทอนุกรมของรีมันน์กล่าวไว้ว่า อนุกรมลู่เข้าตามเงื่อนไข สามารถจัดเรียงให้กลายเป็นอนุกรมลู่ออก และยิ่งไปกว่านั้น ถ้า เป็นจำนวนจริง และ S ก็เป็นจำนวนจริง เราสามารถจัดเรียงใหม่เพื่อให้อนุกรมนั้นลู่เข้าและมีผลรวมเท่ากับ S

การทดสอบของอาเบล (Abel's test) เป็นเครื่องมือสำคัญสำหรับอนุกรมลู่เข้าตามเงื่อนไข ถ้าหากอนุกรมนั้นอยู่ในรูปแบบ

เมื่อผลรวมบางส่วน ถูกจำกัดขอบเขต, เป็นตัวจำกัดความแปรผัน และ มีลิมิต

แล้วอนุกรม ∑ จะลู่เข้า สิ่งนี้เป็นจริงในการลู่เข้ารายจุดของอนุกรมตรีโกณมิติ อาทิ

โดยที่ วิธีการของอาเบลประกอบด้วยการเขียน และกระทำการแปลงอย่างหนึ่งซึ่งคล้ายกับการหาปริพันธ์เป็นส่วน (เรียกว่าผลรวมเป็นส่วน) ซึ่งทำให้อนุกรม ∑ เปลี่ยนเป็นอนุกรมลู่เข้าสัมบูรณ์ได้ดังนี้

อ้างอิง

  • Bromwich, T.J. An Introduction to the Theory of Infinite Series MacMillan & Co. 1908, revised 1926, reprinted 1939, 1942, 1949, 1955, 1959, 1965.

ดูเพิ่ม

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya