PiezoelektrikPiezoelektrik özelliği, (özellikle kristaller ve belirli kristaller; kemik gibi) bazı malzemelere uygulanan mekanik basınç sonucunda, malzemenin elektrik alan ya da elektrik potansiyel[1] değiştirme yeteneğidir. Bu etki, malzemenin içindeki polarizasyon yoğunluğundaki değişmeyle doğrudan alakalıdır. Eğer malzeme kısa devre değilse, uygulanan stres malzemede bir voltaj meydana getirir. Piezo kelimesi, Yunancadan türetilmiştir; “sıkıştırmak, basınç uygulamak” anlamlarına gelmektedir. Piezoelektrik malzemeler terslenebilirdir; yani “direkt piezoelektrik etki” sergileyen (stres uygulandığında elektrik potansiyel üreten) malzemeler, ters piezoelektirk etki (uygulanan elektrik alan sonucunda stres-zorlanma üretimi) de gösterirler. Örneğin, kurşun zirkonat titanat kristalleri, orijinal boyutundan %0,1 oranına kadar şekil değiştirebilirler. Bu etkinin “sesin oluşturulması ve algılanması”, “yüksek voltajlar oluşturulması”, “elektronik frekans yaratılması”, “mikrobalans” ve "optik çevrimcilerin aşırı ince odaklanması” gibi kullanışlı uygulamaları vardır. Aynı zamanda atomik çözünme sonucunda bilimsel birçok tekniğin (taramalı prop mikroskoplar olan STM, AFM, MTA, SNOM gibi) temelini oluşturmakla birlikte, günlük kullanımda ateşleyici olarak çakmaklarda ve barbekülerde kullanılmaktadır. Kültobirasyonların piezoelektriğe doğrudan etkisi yoktur. TarihKeşif ve İlk AraştırmalarMalzemenin sıcaklık değişimine karşı elektrik potansiyel oluşturması özelliği olan “Pyroelektrik etki” 18. yüzyıl ortalarında Cark Linnaeus ve Franz Aepinus tarafından çalışılmıştır. Bu çalışmaların üzerine “René Just Haüy” ve “Antoine César Becquerel” mekanik stres ve elektrik yük arasında bir ilişki olduğunu öne sürdüler ama her ikisinin çalışması da bir neticeye varamadı. Direkt piezoelektrik etkinin ilk ispatı Pierre Curie ve Jacques Curie kardeşler tarafından 1880 yılında yapılmıştır. Pyroelektrik özellik üzerine bildiklerini, kristal yapısının altında yatan kristalin davranışını tahmin etmede pyroelektik özelliğin artması yaklaşımıyla birleştirdiler ve tourmaline, quartz, topaz, cane sugar, Rochelle salt (sodium potassium tartrate tetrahydrate) kristallerini kullanarak etkiyi ispatladılar. En çok piezoelektrik özelliği, Quartz ve Rochelle tuzu sergilediler. Resim [1]. Ancak Curie kardeşler, ters piezoelektrik etki üzerinde düşünmediler. Ters etki, temel termodinamik prensiplerden yola çıkılarak Gabriel Lippmann tarafından matematiksel olarak gösterilmiştir. Bunun üzerine ters etkinin varlığını teyit eden Curie kardeşler, piezoelektrik kristallerde elektro-elasto-mekanik deformasyonlarının terslenebilirliğinin ölçülebilir ispatını gözlemlemekle yollarına devam ettiler. Bundan sonraki birkaç on yıl için piezoelektrik özellik bir laboratuvar merakı oldu. Piezoelektirk özellik sergileyen kristal yapılarını keşfetmek için daha birçok çalışma yapıldı. Bu, tensor analizi kullanarak ayrıntılı bir şekilde piezoelektrik sabitleri ve piezoelektrik özellik gösteren 20 doğal kristal sınıfının tanımlandığı Woldemar Voigt'ın Lehrbuch der Kristallphysik (textbook on crystal physics) çalışmasının 1910 yılında yayımlanmasıyla sonuçlanmıştır. I. Dünya Savaşı ve SonrasıPiezoelektrik aletlerde ilk pratik uygulama I. Dünya Savaşı sırasında kullanılan “sonar”lardır. 1917’de Fransa’da Paul Langevin ve beraberinde çalışanlar “ultrasonic submarine detector” ürettiler. Dedektör, iki çelik plaka arasına film kuvarsların yapıştırılmasıyla oluşturulan dönüştürücü (transducer) ve çevirilen ekonun algılanmasında kullanılan hidrofonlardan meydana gelir. Dönüştürücüden yüksek frekanslı sinyal (chirp) yayılmasıyla ve nesneden yansıyan ses dalgasından yayılan ekonun duyulması için geçen zamanın ölçülmesiyle bu nesneye uzaklık ölçülebilir. Sonarlarada piezoelektrik kullanımı ve bu projenin başarısı piezoelektrik aletler üzerindeki ilginin gelişmesine neden olmuştur. Bundan sonraki on yıllar boyunca yeni piezoelektrik malzemeler ve bu malzemelerin yeni uygulamaları keşfedildi ve geliştirildi. Piezoelektrik malzemeler evlerde birçok alanda kullanılır. Ucuz ve hassas seramik fonograf (gramofon) kasetleri yürütücü dizaynını kolaylaştırdı ve kayıtçalarların ucuz olmasını ve yapımının kolaylaşmasını sağladı. Ultrasonik dönüştürücüler katı ve sıvılarda viskozite ve elastisite ölçümünün kolaylaştırılmasına ve sonuç olarak malzeme araştırmasında büyük gelişmelerin oluşmasına neden olmuştur. Ultrasonik zaman tabanlı reflektometreler -bunlar, malzemelere ultrasonik vurular göndererek malzemenin süreksizliğinden gelen yansımaları ölçer- metal ve kaya nesnelerin içindeki kusurları bulur. Bu da yapının güçlenmesine neden olur. II. Dünya Savaşı ve SonrasıII. Dünya Savaşı boyunca, Birleşik Devletler, Rusya ve Japonyadaki bağımsız araştırma grupları doğal malzemelerden daha büyük piezoelektrik sabitlere sahip olan yeni bir, insan yapımı malzeme sınıfı keşfettiler (ferroelektrikler). Bu gelişme “baryum titanat” ve “kurşun zirkonat titanat” malzemelerinin ve bunların kendilerine has özellikleri ve özel uygullamalarının geliştirilmesinde araştırmaları güçlendirdi. Piezoelektrik kristallerin bir özel örneği de Bell Telefon Laboratuvar’larında geliştirilmiştir. I. Dünya Savaşını takiben, mühendislik bölümünde radyo telefonu alanında çalışan Mr. Frederick R. Lack, önceden kullanılan ağır donanımın yardımı olmadan geniş sıcaklık aralıklarında çalıştırılan “AT cut” kristallerini geliştirdi. Bu gelişmeler, cihazın uçaklarda kullanılabilmesini sağlamıştır. Bu gelişme Müttefik hava kuvvetlerinin, havacılık radyosunu kullanarak koordine toplu saldırılarla çatışmasına izin verdi. MekanizmaPiezoelektrik etkinin doğası, katılarda elektrik dipol momentlerinin oluşumuyla yakından ilişkilidir. Sonuncusu ya asimetrik yük çevresi ile kristal kafes bölgelerinde iyonlar için indüklenebilir (BaTiO3 ve PZT’lerde olduğu gibi) veya doğrudan moleküler gruplar tarafından taşınabilir (şeker kamışında olduğu gibi). Kristaller için dipol yoğunluğu veya kutuplaşma (boyutsallık [C·m/m3]), kristalografik birim hücre hacmi başına dipol momentlerini toplayarak kolayca hesaplanabilir.[2] Her dipol bir vektör olduğundan, P dipol yoğunluğu bir vektör alanı'dır. Birbirine yakın dipoller, Weiss alanları denilen bölgelerde hizalanma eğilimindedir. Alanlar genellikle rastgele yönlendirilir ama genellikle yüksek sıcaklıklarda malzemeye güçlü elektrik alanı uygulandığı "kutuplama" (manyetik kutuplama ile aynı değildir) süreci kullanılarak hizalanabilir. Tüm piezoelektrik malzemeler kutuplanamaz.[3] Piezoelektrik etki için belirleyici önem, bir mekanik stres uygulandığında P kutuplaşmanın değişmesidir. Bu, ya dipolü indükleyen çevrenin yeniden yapılandırmasından ya da dış stresin etkisindeki moleküler dipol momentlerinin yeniden yönlendirilmesinden kaynaklanabilir. Piezoelektrik, polarizasyon kuvvetinin, yönünün veya her ikisinin değişimiyle şu değişkenlere bağlı olarak görülebilir: 1. kristal içindeki P yönü, 2. kristal simetrisi, 3. uygulanan mekanik stres. P değerindeki değişiklik, kristal yüzler üzerindeki yüzey yük yoğunluğu’nun değişimi olarak yani yığındaki dipol yoğunluğundaki değişikliğin neden olduğu yüzler arasındaki elektrik alanı’nın değişimi olarak görünür. Örneğin, 2 kN (500 lbf) doğru uygulanan kuvvete sahip 1 cm3 kuvars küpü 12,500 V'luk voltaj üretebilir.[4] Piezoelektrik malzemeler aynı zamanda, bir elektrik alanının uygulanmasının kristalde mekanik şekil değişikliği yarattığı ters piezoelektrik etki denilen zıt etkiyi de gösterir. Kristal sınıfları32 Kristal sınıfından 21'i simetrik merkezli değildir (simetri merkezine sahip değildir) ve bunlardan 20'si doğrudan piezoelektrik gösterir[5] (21. kübik sınıf 432'dir). Bunlardan on tanesi, birim hücreleriyle ilişkili kaybolmayan bir elektrik dipol momenti nedeniyle mekanik stres olmadan kendiliğinden bir kutuplaşma gösteren ve piroelektrik sergileyen kutupsal kristal sınıflarını,[6] temsil eder. Dipol momenti harici bir elektrik alanı uygulanarak tersine çevrilebilirse, malzemenin ferroelektrik olduğu söylenir.
P ≠ 0'ın mekanik bir yük uygulamadan tuttuğu kutupsal kristaller için, piezoelektrik etki, P 'nin büyüklüğünü veya yönünü ya da her ikisi de değiştirerek kendini gösterir. Polar olmayan fakat piezoelektrik kristaller için ise, sıfırdan farklı bir P polarizasyonu sadece mekanik bir yük uygulanarak ortaya çıkar. Onlar için stresin, malzemeyi kutupsal olmayan bir kristal sınıfından (P = 0) kutupsal olana dönüştürdüğü,[2] P ≠ 0 değerine sahip olduğu düşünülebilir. MalzemelerBirçok malzeme piezoelektriklik sergiler. Kristal malzemeler
SeramikRastgele yönlendirilmiş tanelere sahip seramikler, piezoelektriklik sergilemek için ferroelektrik olmalıdır.[10] Sinterlenmiş polikristalin piezoelektrik seramiklerde anormal tanecik büyümesi (AGG) oluşumu, bu tür sistemlerde piezoelektrik verimde zararlı etkilere sahiptir ve mikro yapı olarak bundan kaçınılmalıdır. AGG sergileyen piezoseramiklerde, rastgele yönlendirilmiş daha ince tanelerden oluşan bir matriste anormal derecede büyük birkaç uzun taneden oluşma eğilimindedir. AlN ve ZnO gibi dokulu polikristal ferroelektrik olmayan piezoelektrik malzemelerde makroskopik piezoelektrik mümkündür.
Kurşunsuz piezoseramikler
Kurşunsuz piezoseramiklerin üretimi, çevresel bakış açısı ve kurşun bazlı muadillerinin özelliklerini kopyalama yetenekleri açısından birçok zorluk çıkarır. Piezoseramik kurşun bileşeninin çıkarılmasıyla insanlar için zehirlenme riski azalır ancak madenciliği ve malzemelerin çıkarılması çevreye zararlı olabilir.[15] PZT'nin sodyum potasyum niyobat (NKN veya KNN) ile çevresel profilinin analizi, dikkate alınan dört gösterge (birincil enerji tüketimi, toksikolojik ayak izi, eko-gösterge 99 ve girdi-çıktı yukarı akış sera gazı emisyonları) genelinde KNN'nin aslında çevreye daha zararlı olduğunu gösterir. KNN ile ilgili endişelerin çoğu, özellikle de Nb2O5 bileşeni, üreticilere ulaşmadan önce yaşam döngüsünün ilk aşamasındadır. Zararlı etkiler bu erken aşamalara odaklandığından etkileri en aza indirmek için bazı önlemler alınabilir. Nb2O5 madenciliğinden sonra barajın sökülmesi (yıkılması) veya kullanılabilir toprak stokunun değiştirilmesi yoluyla araziyi aslına yakın şekilde döndürülmesi herhangi bir çıkarma olayı için bilinen yardımcılardır. Hava kalitesi etkilerini en aza indirmek için, hangi azaltma yöntemlerinin gerekli olduğunu tam olarak anlamak için hala modelleme ve simülasyonun yapılması gerekmektedir. Kurşunsuz piezoseramik bileşenlerin çıkarılması şu anda önemli miktarlara ulaşmamıştır ancak erken analizlerden itibaren uzmanlar çevresel etkiler konusunda dikkatli olunmasını ifade ederler. Kurşunsuz piezoseramik üretiminde, kurşun esaslı muadillerinin verimini ve kararlılığını sürdürme zorlukları vardır. Genellikle başlıca üretim zorluğu malzemenin sıcaklık kararlılığını azaltan "polimorfik faz sınırları (PPB'ler)" oluşmadan malzemelere kararlı piezoelektrik özellikleri sağlayan "morfotropik faz sınırları (MPB'ler)" oluşturmaktır.[16] Faz geçiş sıcaklıklarının oda sıcaklığında yakınsaması için katkı maddesi konsantrasyonlarını değiştirerek yeni faz sınırları oluşturulur. MPB'nin eklenmesi piezoelektrik özellikleri iyileştirir ama PPB eklenirse malzeme sıcaklıktan olumsuz etkilenir. Faz mühendisliği, difüzyon faz geçişleri, alan mühendisliği (ing:domain engineering) ve kimyasal değişiklikle tanıtılan faz sınır tipini kontrol etmek için araştırmalar devam etmektedir. III–V ve II–VI yarı iletkenlerGrup III-V ve II-VI malzemeleri gibi merkezi simetrili herhangi bir yığın veya nano yapılı yarı iletken kristalde, uygulanan stres ve gerilme sonucu iyonların polarizasyonu nedeniyle piezoelektrik potansiyel oluşturulabilir. Bu özellik hem çinkoblende hem de wurtzite kristal yapılarında ortaktır. Birinci dereceden çinkoblende'de e14 denilen ve gerilmenin kesme bileşenlerine bağlı yalnızca bir bağımsız piezoelektrik katsayısı vardır. Wurtzite'de bunun yerine üç bağımsız piezoelektrik katsayı vardır: e31, e33 ve e15. En güçlü piezoelektriklik gözlemlenen yarıiletkenler GaN, InN, AlN ve ZnO gibi wurtzite yapısında çok olanlardır (bkz. piezotronik). 2006'dan beri, güçlü polar yarı iletkenlerde doğrusal olmayan piezoelektrik etkilerle ilgili pek çok rapor vardır.[17] Bu tür etkilerin, birinci dereceden yaklaşıklık ile aynı büyüklük derecesinde olmasa da önemli olduğu kabul edilir. UygulamaHalen sanayi ve imalat, piezoelektrik cihazların en büyük uygulama pazarıdır ve bunu otomotiv sanayisi izler. Güçlü talep, tıbbi cihazların yanı sıra bilgi ve telekomünikasyondan da gelmektedir. Piezoelektrik cihazlara yönelik küresel talep 2015 yılında yaklaşık 21.6 milyar ABD Doları değerindeydi. Piezoelektrik cihazlar için en büyük malzeme grubu piezoseramiktir ve piezopolimer, hafifliği ve küçüklüğü nedeniyle hızla kullanımı büyümektedir.[18] Piezoelektrik kristaller artık çeşitli şekillerde kullanılmaktadır: Yüksek voltaj ve güç kaynaklarıKuvars gibi bazı maddelerin doğrudan piezoelektrikliği, binlerce volt potansiyel farkı üretebilir.
Kaynakça
Information related to Piezoelektrik |