Нехай X1, …, Xn — це незалежні випадкові величини з розподілу N(μ, σ2), тобто це вибірка розміру n з популяції з нормальним розподілом з середнім значенням μ і дисперсією σ2.
Нехай
буде середнім вибірки і нехай
буде (виправлена згідно з Бесселем) дисперсія вибірки. Тоді випадкова величина
має стандартний нормальний розподіл (тобто, з середнім 0 і дисперсією 1), а випадкова величина
(де ми підставили S замість σ) має t-розподіл Стьюдента з n − 1 ступенями вільності. Через те що ми замінили на єдина неспостережувана величина тут це отже ми можемо використати це, щоб знайти довірчі інтервали для Зауважте, що незважаючи на те, що вони базуються на тій самій вибірці чисельник і знаменник у попередньому виразі — незалежні випадкові величини. Це можна побачити спостерігши, що і згадавши, що і це дві лінійні комбінації тої самої множини н.о.р. нормально розподілених випадкових величин.
Загалом щільність t-розподілу схожа на дзвоноподібну функцію щільності нормального розподілу, з тією відмінністю, що у t-розподілу вона трохи нижча і ширша. За кількості ступенів свободи, що прямує до нескінченості, t-розподіл прямує до нормального розподілу з математичним сподіванням 0 і дисперсією 1.
На графіках нижче показано щільності t-розподілу для зростаючих значень параметру . Для порівняння, нормальний розподіл зображено синім. Можна помітити, що із збільшенням щільність t-розподілу наближається до нормального.
Щільність t-розподілу для 1, 3, 5, 30 ступенів вільності (зображено червоним) у порівнянні зі щільністю нормального розподілу (зображено синім). Зеленим показано щільності з меншою кількістю ступенів вільності."
1 ступінь вільності
3 ступені вільності
5 ступені вільності
30 ступенів вільності
Таблиця вибраних значень
Наступна таблиця містить кілька вибраних значень цього розподілу, з r ступенями свободи для інтервалів певності 90 %, 95 %, 97,5 % та 99,5 %.
Ці числа «односторонні», тобто коли ми бачимо «90%», «4 ступенів свободи», та «1.533»,
це означає
це не означає
Тому, по симетрії розподілу, ми маємо
та в результаті
r
75 %
80 %
85 %
90 %
95 %
97.5 %
99 %
99.5 %
99.75 %
99.9 %
99.95 %
1
1.000
1.376
1.963
3.078
6.314
12.71
31.82
63.66
127.3
318.3
636.6
2
0.816
1.061
1.386
1.886
2.920
4.303
6.965
9.925
14.09
22.33
31.60
3
0.765
0.978
1.250
1.638
2.353
3.182
4.541
5.841
7.453
10.21
12.92
4
0.741
0.941
1.190
1.533
2.132
2.776
3.747
4.604
5.598
7.173
8.610
5
0.727
0.920
1.156
1.476
2.015
2.571
3.365
4.032
4.773
5.893
6.869
6
0.718
0.906
1.134
1.440
1.943
2.447
3.143
3.707
4.317
5.208
5.959
7
0.711
0.896
1.119
1.415
1.895
2.365
2.998
3.499
4.029
4.785
5.408
8
0.706
0.889
1.108
1.397
1.860
2.306
2.896
3.355
3.833
4.501
5.041
9
0.703
0.883
1.100
1.383
1.833
2.262
2.821
3.250
3.690
4.297
4.781
10
0.700
0.879
1.093
1.372
1.812
2.228
2.764
3.169
3.581
4.144
4.587
11
0.697
0.876
1.088
1.363
1.796
2.201
2.718
3.106
3.497
4.025
4.437
12
0.695
0.873
1.083
1.356
1.782
2.179
2.681
3.055
3.428
3.930
4.318
13
0.694
0.870
1.079
1.350
1.771
2.160
2.650
3.012
3.372
3.852
4.221
14
0.692
0.868
1.076
1.345
1.761
2.145
2.624
2.977
3.326
3.787
4.140
15
0.691
0.866
1.074
1.341
1.753
2.131
2.602
2.947
3.286
3.733
4.073
16
0.690
0.865
1.071
1.337
1.746
2.120
2.583
2.921
3.252
3.686
4.015
17
0.689
0.863
1.069
1.333
1.740
2.110
2.567
2.898
3.222
3.646
3.965
18
0.688
0.862
1.067
1.330
1.734
2.101
2.552
2.878
3.197
3.610
3.922
19
0.688
0.861
1.066
1.328
1.729
2.093
2.539
2.861
3.174
3.579
3.883
20
0.687
0.860
1.064
1.325
1.725
2.086
2.528
2.845
3.153
3.552
3.850
21
0.686
0.859
1.063
1.323
1.721
2.080
2.518
2.831
3.135
3.527
3.819
22
0.686
0.858
1.061
1.321
1.717
2.074
2.508
2.819
3.119
3.505
3.792
23
0.685
0.858
1.060
1.319
1.714
2.069
2.500
2.807
3.104
3.485
3.767
24
0.685
0.857
1.059
1.318
1.711
2.064
2.492
2.797
3.091
3.467
3.745
25
0.684
0.856
1.058
1.316
1.708
2.060
2.485
2.787
3.078
3.450
3.725
26
0.684
0.856
1.058
1.315
1.706
2.056
2.479
2.779
3.067
3.435
3.707
27
0.684
0.855
1.057
1.314
1.703
2.052
2.473
2.771
3.057
3.421
3.690
28
0.683
0.855
1.056
1.313
1.701
2.048
2.467
2.763
3.047
3.408
3.674
29
0.683
0.854
1.055
1.311
1.699
2.045
2.462
2.756
3.038
3.396
3.659
30
0.683
0.854
1.055
1.310
1.697
2.042
2.457
2.750
3.030
3.385
3.646
40
0.681
0.851
1.050
1.303
1.684
2.021
2.423
2.704
2.971
3.307
3.551
50
0.679
0.849
1.047
1.299
1.676
2.009
2.403
2.678
2.937
3.261
3.496
60
0.679
0.848
1.045
1.296
1.671
2.000
2.390
2.660
2.915
3.232
3.460
80
0.678
0.846
1.043
1.292
1.664
1.990
2.374
2.639
2.887
3.195
3.416
100
0.677
0.845
1.042
1.290
1.660
1.984
2.364
2.626
2.871
3.174
3.390
120
0.677
0.845
1.041
1.289
1.658
1.980
2.358
2.617
2.860
3.160
3.373
0.674
0.842
1.036
1.282
1.645
1.960
2.326
2.576
2.807
3.090
3.291
Наприклад, якщо ми маємо вибірку з варіацією 2 та середнім значенням 10, вибраним з набору 11 елементів (10 ступенів свободи), використовуючи формулу:
Ми можемо визначити що з 90-відсотковою впевненістю ми маємо дійсне середнє значення, яке лежить в інтервалі:
Та, знову з 90 % впевненістю, ми маємо дійсне середнє значення, яке лежить поза інтервалом:
Так, з 80 % впевненістю, ми маємо дійсне середнє значення, яке лежить поміж:
Література
«Student» (W.S. Gosset) (1908) The probable error of a mean. Biometrika[en] 6(1):1-25.
M. Abramowitz and I. A. Stegun, eds. (1972) Handbook of Mathematical Functions[en] with Formulas, Graphs, and Mathematical Tables. New York: Dover. (See Section 26.7.)
R.V. Hogg and A.T. Craig (1978) Introduction to Mathematical Statistics. New York: Macmillan.
Посилання
VassarStats Density plot, critical values, etc., calculated for a user-specified number of d.f.