Ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.[4][5]
Properties
Ethenone is a highly reactive gas (at standard conditions) and has a sharp irritating odour. It is only reasonably stable at low temperatures (−80 °C). It must therefore always be prepared for each use and processed immediately, otherwise a dimerization to diketene occurs or it reacts to polymers that are difficult to handle. The polymer content formed during the preparation is reduced, for example, by adding sulfur dioxide to the ketene gas.[6] Because of its cumulative double bonds, ethenone is highly reactive and reacts in an addition reaction H-acidic compounds to the corresponding acetic acid derivatives. It does for example react with water to acetic acid or with primary or secondary amines to the corresponding acetamides.
Preparation
Ethenone is produced by thermal dehydration of acetic acid at 700–750 °C in the presence of triethyl phosphate as a catalyst:[7][8]
This reaction is called the Schmidlin ketene synthesis.[11]
On a laboratory scale it can be produced by the thermal decomposition of Meldrum's acid at temperatures greater than 200 °C.[citation needed]
History
Ethenone was first produced in 1907 by N. T. M. Wilsmore through pyrolysis of acetone or acetic anhydride vapours over a hot platinum wire in an apparatus that was later developed by Charles D. Hurd into the "Hurd lamp" or "ketene lamp". This apparatus consists of a heated flask of acetone producing vapours which are pyrolyzed by a metal filament electrically heated to red heat, with a condenser to return unreacted acetone to the boiling flask. Other heating methods have been used and similar methods were used on a larger scale for the industrial production of ketene for acetic anhydride synthesis.[12][13][14]
Ethenone reacts with methanal in the presence of catalysts such as Lewis acids (AlCl3, ZnCl2 or BF3) to give β-propiolactone.[21] The technically most significant use of ethenone is the synthesis of sorbic acid by reaction with 2-butenal (crotonaldehyde) in toluene at about 50 °C in the presence of zinc salts of long-chain carboxylic acids. This produces a polyester of 3-hydroxy-4-hexenoic acid, which is thermally[22] or hydrolytically depolymerized to sorbic acid.
Exposure to concentrated levels causes humans to experience irritation of body parts such as the eye, nose, throat and lungs. Extended toxicity testing on mice, rats, guinea pigs and rabbits showed that ten-minute exposures to concentrations of freshly generated ethenone as low as 0.2 mg/liter (116 ppm) may produce a high percentage of deaths in small animals. These findings show ethenone is toxicologically identical to phosgene.[28][20]
The formation of ketene in the pyrolysis of vitamin E acetate, an additive of some e-liquid products, is one possible mechanism of the reported pulmonary damage[29] caused by electronic cigarette use.[30]
A number of patents describe the catalytic formation of ketene from carboxylic acids and acetates, using a variety of metals or ceramics, some of which are known to occur in e-cigarette devices from patients with e-cigarette or vaping product-use associated lung injury (EVALI).[31][32]
Occupational exposure limits are set at 0.5 ppm (0.9 mg/m3) over an eight-hour time-weighted average.[33]
An IDLH limit is set at 5 ppm, as this is the lowest concentration productive of a clinically relevant physiologic response in humans.[34]
^Weygand C (1972). Hilgetag G, Martini A (eds.). Weygand/Hilgetag Preparative Organic Chemistry (4th ed.). New York: John Wiley & Sons, Inc. pp. 1031–1032. ISBN978-0471937494.
^H. Staudinger H. W. Klever (1908): "Keten. Bemerkung zur Abhandlung zur Abhandlung der HHrn. V.T. Wilsmore und A. W. Stewart". Berichte der deutschen chemischen Gesellschaft, volume 41, issue 1, pages 1516-1517. doi:10.1002/cber.190804101275
^Tidwell, T. T. (2005), "Ein Jahrhundert Ketene (1905–2005): die Entdeckung einer vielseitigen Klasse reaktiver Intermediate". Angewandte Chemie, volume 117, pages 5926–5933. doi:10.1002/ange.200500098
^Norman Thomas Mortimer Wilsmore (1907): "Keten". Journal of the Chemical Society, Transactions, volume 91, article CLXXXVIII (188), pages 1938-1941. doi:10.1039/ct9079101938
^Nguyen, Minh Tho; Raspoet, Greet (1999). "The hydration mechanism of ketene: 15 years later". Can. J. Chem. 77 (5–6): 817–829. doi:10.1139/v99-090.
^Christoph Taeschler :Ketenes, Ketene Dimers, and Related Substances, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2010
^H. A. Wooster; C. C. Lushbaugh; C. E. Redeman (1946). "The Inhalation Toxicity of Ketene and of Ketene Dimer". J. Am. Chem. Soc.68 (12): 2743. doi:10.1021/ja01216a526.