Corpo não comutativoCorpo não comutativo, em álgebra abstrata, é uma estrutura matemática que tem todas as propriedades usuais de corpos, ou seja, tem operações de soma e produto que tem elemento neutro, elemento inverso, distributividade, etc, exceto que, no corpo não comutativo, a multiplicação não é comutativa.[1] O estudo dos corpos não comutativos se iniciou em 1843, quando W. R. Hamilton apresentou os quaterniões, considerados, por ele, como o clímax da sua brilhante carreira matemática.[2] Em 1905, Wedderburn provou que não existem corpos finitos não comutativos, ou seja, todo anel de divisão [Nota 1] finito é comutativo.[3] Exemplos de corpos não comutativos são raros na literatura matemática, sendo o primeiro caso de um corpo não comutativo construído como séries de potências o exemplo de Hilbert, em 1898, que ilustrava o fato de que um corpo ordenado não arquimediano não precisava ser comutativo.[2] DefiniçãoUm corpo não comutativo é uma estrutura matemática (R, +, ., 0, 1) satisfazendo as seguintes propriedades:[4]
Exemplo: os quaterniõesO primeiro exemplo foi dado por Hamilton, em 1843: são os quaterniões, também chamados como os quaterniões de Hamilton.[4] Neste anel, cada elemento é escrito como uma soma formal a = a0 + a1 i + a2 j + a3 k, em que a0, a1, a2 e a3 são números reais, e a multiplicação é feita assumindo-se as propriedades associativa e distributiva, que um número real comuta, na multiplicação, com i, j e k, e que estes três símbolos formais operam de acordo com as regras:[5]
Uma apresentação equivalente, porém anacrônica (pois matrizes foram introduzidas na matemática por Cayley, em 1855), dos quaterniões pode ser feita por meio de matrizes complexas. Um quaternião seria uma matriz H dada por:[6] Obviamente, 1 é a matriz identidade, e os elementos i, j e k podem ser identificados com as matrizes:[6] Exemplo: série formal de LaurentOutro exemplo clássico parte de um corpo (comutativo) L e um automorfismo σ de L. Seja L((T; σ)) o anel das séries de Laurent formais com variável T e coeficientes em L, ou seja, cada elemento de L é escrito, formalmente, como uma série de potências que começa em alguma potência (positiva ou negativa) de T mas não termina, ou seja, são termos da forma: A soma é feita componente a componente, porém o produto é feito após a aplicação da regra: Prova-se que estas operações definem um anel, e que a multiplicação tem elemento inverso. Se o automorfismo σ não for a própria identidade, então a multiplicação não é comutativa.[7] Notas e referênciasNotas
Referências
Information related to Corpo não comutativo |