У этого термина существуют и другие значения, см.
Метрика.
Метри́ческий те́нзор, или ме́трика, — симметричное тензорное поле ранга (0,2) на гладком многообразии, посредством которого задаётся скалярное произведение векторов в касательном пространстве.
Иначе говоря, метрический тензор задаёт билинейную форму на касательном пространстве к этой точке, обладающую свойствами скалярного произведения и гладко зависящую от точки.
Метрический тензор позволяет определить длины кривых, углы между кривыми, объём и другие понятия свойственные евклидову пространству.
В частном случае поверхности метрика также называется первой квадратичной формой.
В общей теории относительности метрика рассматривается в качестве фундаментального физического поля (гравитационного) на четырёхмерном многообразии физического пространства-времени. Широко используется и в других построениях теоретической физики, в частности, в биметрических теориях гравитации на пространстве-времени рассматривают сразу две метрики.
Далее в формулах этой статьи с повторяющимися индексами везде подразумевается суммирование по правилу Эйнштейна, то есть по каждому повторяющемуся индексу.
Способы задания
Координатное представление
Метрический тензор имеет ранг .
В локальных координатах , обычно задаётся как ковариантное тензорное поле .
Через него определяются скалярные произведения координатных векторных полей :
А для любых векторных полей скалярное произведение вычисляется по формуле
- ,
где — представление векторных полей в локальных координатах.
Замечания
Иногда метрический тензор задаётся двойственным способом, с помощью контравариантного тензора .
В случае невырожденных метрик
где — символ Кронекера. В этом случае оба способа эквивалентны, и оба представления метрики бывают полезны.
Для вырожденных метрик иногда удобнее пользоваться именно контравариантной метрикой. Например, субриманова метрика может быть определена через тензор , но тензор для неё не определён.
Представление в поле реперов
Иногда удобно задавать метрический тензор через выбранное (не обязательно координатное, как это описано выше) поле реперов, то есть выбором реперного поля и матрицы .
Например, риманов метрический тензор может быть задан ортонормированным полем реперов[1].
Индуцированная метрика
Метрика, которая индуцируется гладким вложением многообразия в евклидово пространство , может быть посчитана по формуле:
где означает матрицу Якоби вложения и — транспонированная к ней. Иначе говоря, скалярные произведения базисных координатных векторов касательного пространства , которые в этом случае можно отождествить с , определяются как
где обозначает скалярное произведение в .
Более обобщенно
Пусть многообразие с метрикой и гладкое вложение.
Тогда метрика на , определённая равенством
называется индуцированной метрикой.
Здесь обозначает дифференциал отображения .
Типы метрических тензоров
Совокупность метрических тензоров подразделяется на два класса:
- невырожденные или псевдоримановы метрики, когда во всех точках многообразия. Среди невырожденных метрических тензоров, в свою очередь, различаются:
- Риманов метрический тензор (или риманова метрика), для которого квадратичная форма является положительно определенной. Многообразие с выделенным римановым метрическим тензором называется римановым, они имеют естественную структуру метрического пространства.
- Собственно псевдориманов метрический тензор (или индефинитная метрика), когда форма не является знакоопределённой. Многообразие с выделенным псевдоримановым метрическим тензором называется (собственно) псевдоримановым.
- Вырожденные метрики, когда либо в некоторых точках.
Обычно под метрическим тензором без специального на то указания в математике понимается риманов метрический тензор; но если, рассматривая невырожденный метрический тензор, хотят подчеркнуть, что речь идет именно о римановом, а не псевдоримановом метрическом тензоре, то о нём говорят как о собственно римановом метрическом тензоре. В физике под метрическим тензором обычно подразумевают лоренцеву метрику пространства-времени.
Иногда под псевдоримановым тензором и псевдоримановым многообразием понимают то, что выше определено как собственно псевдоримановы метрика и многообразие, а для первых сохраняется только термин «невырожденная метрика» и соответственно «многообразие с невырожденной метрикой».
Связанные определения
- Вектор нулевой длины в пространстве с псевдоримановой метрикой называется изотропным (также нулевым или светоподобным) и задает определенное изотропное направление на многообразии; например, свет в пространственно-временном континууме путешествует вдоль изотропных направлений.
- Многообразие с выделенным римановым метрическим тензором называется римановым многообразием.
- Многообразие с выделенным псевдоримановым метрическим тензором называется псевдоримановым многообразием.
- Метрики на многообразии называются геодезически эквивалентными, если их геодезические (рассматриваемые как непараметризованные кривые) совпадают.
Свойства
- Риманов метрический тензор может быть введён на любом паракомпактном гладком многообразии.
- Риманов метрический тензор индуцирует на многообразии естественную структуру метрического пространства
- Индефинитная метрика не порождает метрического пространства. Однако на её основе может быть, по крайней мере в некоторых случаях, специальным образом построена топология (см. Топология Александрова), вообще говоря, не совпадающая с естественной топологией многообразия.
Метрика и объём
Определитель матрицы метрического тензора дает квадрат объема параллелепипеда, натянутого на базисные векторы. (В ортонормированных базисах это единица).
Поэтому величина играет важную роль при вычислении объемов, а также при интегрировании по объему. В частности, входит в общее выражение тензора Леви-Чивиты, используемого для вычисления смешанного произведения, векторного произведения и их многомерных аналогов.
Интегрирование же по объему включает этот множитель, например, при необходимости проинтегрировать в координатах какой-то скаляр (чтобы результат был инвариантным):
где — это элемент -мерного объема, а — дифференциалы координат.
- Для подмногообразий объём (площадь) определяется как объём (площадь) относительно индуцированной метрики.
Примеры
- Метрический тензор на евклидовой плоскости:
- В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
- В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
- В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
- В полярных координатах:
- Метрический тензор на сфере. Сфера (двумерная) радиуса , вложенная в трехмерное пространство, имеет естественную метрику, индуцированную евклидовой метрикой объемлющего пространства. В стандартных сферических координатах метрика принимает вид:
- Метрический тензор для трёхмерного евклидова пространства:
- В прямоугольных декартовых координатах единичного масштаба метрический тензор постоянен (не зависит от координат) и представлен единичной матрицей (его компоненты равны символу Кронекера)
- В прямоугольных декартовых координатах неединичного масштаба метрический тензор представлен постоянной (не зависящей от координат) диагональной матрицей, ненулевые компоненты которой определяются масштабом по каждой оси (вообще говоря они не равны).
- В косоугольных декартовых координатах метрический тензор постоянен (не зависит от координат) и положительно определён, но в остальном, вообще говоря, представлен произвольной симметричной матрицей.
- В сферических координатах: :
- Метрика Лоренца (Метрика Минковского).
- Метрика Шварцшильда
Изоморфизм между касательным и кокасательным пространствами
Метрический тензор устанавливает изоморфизм между касательным пространством и кокасательным пространством: пусть — вектор из касательного пространства, тогда для метрического тензора на , мы получаем, что , то есть отображение, которое переводит другой вектор в число , является элементом дуального пространства линейных функционалов (1-форм) . Невырожденность метрического тензора (если или где она есть) превращает это отображение в биекцию, а тот факт, что сам по себе есть тензор, делает это отображение независимым от координат.
Для тензорных полей это позволяет «поднимать и опускать индексы» у любого тензорного поля (жаргонное название — «жонглирование индексами»).
В компонентах операция поднятия-опускания индекса, выглядит так:
- — опускание индекса для вектора,
- — поднятие индекса для вектора,
- — пример одновременного поднятия индекса и опускания индекса для тензора большой валентности.
(К скалярам эта операция, естественно, не применяется).
Для тензороподобных объектов (не являющихся тензорами), как например символы Кристоффеля, преобразование контравариантных компонент в ковариантные и обратно определяется, как правило, так же, как и для тензорных. При желании жонглирование можно применить и к матрицам Якоби, только в этом случае нужно проследить за тем, что метрика для поднятия-опускания первого индекса будет, конечно, вообще говоря, отличаться от метрики для такой же операции со вторым.
См. также
Примечания
- ↑
См., например,
- Картан Э. Ж. Риманова геометрия в ортогональном репере. — М.: изд-во МГУ, [1926-1927]1960
- Картан Э. Ж. Теория конечных непрерывных групп и дифференциальная геометрия изложенная методом подвижного репера. — М.: изд-во МГУ, [1930]1963