Простое веществониобий — блестящий переходныйметалл серебристо-серого цвета с кубической объёмноцентрированной кристаллической решёткой типа α-Fe, а = 0,3294. Для ниобия известны изотопы с массовыми числами от 81 до 113.
В 1802 году А. Г. Экеберг открыл тантал, который совпадал практически по всем химическим свойствам с ниобием, и поэтому долгое время считалось, что это один и тот же элемент. Лишь в 1844 году немецкий химик Генрих Розе установил, что это отличный от тантала элемент и переименовал его в «ниобий» в честь дочери ТанталаНиобы, чем подчеркнул сходство между элементами. Однако в некоторых странах (США, Англии) долго сохранялось первоначальное название элемента — колумбий, и только в 1950 году решением Международного союза теоретической и прикладной химии (ИЮПАК, IUPAC) элементу окончательно было присвоено название ниобий.
Впервые чистый ниобий был получен в конце XIX века французским химиком Анри Муассаном электротермическим путём: он восстановил оксид ниобия углеродом в электропечи[4].
Нахождение в природе
Кларк ниобия — 18 г/т. Содержание ниобия увеличивается от ультраосновных (0,2 г/т Nb) к кислым породам (24 г/т Nb). Ниобию всегда сопутствует тантал. Близкие химические свойства ниобия и тантала обусловливают совместное их нахождение в одних и тех же минералах и участие в общих геологических процессах. Ниобий способен замещать титан в ряде титансодержащих минералов (сфен, ортит, перовскит, биотит). Форма нахождения ниобия в природе может быть разной: рассеянной (в породообразующих и акцессорных минералах магматических пород) и минеральной. В общей сложности известно более ста минералов, содержащих ниобий. Из них промышленное значение имеют лишь некоторые: колумбит-танталит (Fe, Mn)(Nb, Ta)2O6, пирохлор (Na, Ca, TR, U)2(Nb, Ta, Ti)2O6(OH, F) (Nb2O5 0 — 63 %), лопарит (Na, Ca, Ce)(Ti, Nb)O3 ((Nb, Ta)2O5 8 — 10 %), иногда используются эвксенит, торолит, ильменорутил, а также минералы, содержащие ниобий в виде примесей (ильменит, касситерит, вольфрамит). В щелочных — ультраосновных породах ниобий рассеивается в минералах типа перовскита и в эвдиалите. В экзогенных процессах минералы ниобия и тантала, являясь устойчивыми, могут накапливаться в делювиально-аллювиальных россыпях (колумбитовые россыпи), иногда в бокситах коры выветривания. Концентрация ниобия в морской воде 1⋅10−5 мг/л[5].
Природный ниобий состоит из единственного стабильного изотопа — 93Nb. Все остальные искусственно полученные изотопы ниобия с массовыми числами от 81 до 113 радиоактивны (всего их известно 32). Наиболее долгоживущий изотоп — 92Nb с периодом полураспада 34,7 млн лет.
Ниобий — это пластичныйтугоплавкийпереходныйметалл, чьи физические свойства зависят от значений температуры.
Температура плавления 2468 °С и плотностью 8,57 г/см3 (при 20 °С). Температура кипения ниобия равна 4742 °С, структура решетки объемно центрированная кубическая с периодом 0,33 нм.
Химические свойства
Химически ниобий довольно устойчив, но уступает в этом отношении танталу. На него практически не действуют соляная, ортофосфорная, разбавленная серная, азотная кислоты. Металл растворяется в плавиковой кислоте HF, смеси HF и HNO3, концентрированных растворах едких щелочей, а также в концентрированной серной кислоте при нагревании свыше 150 °C. При прокаливании на воздухе окисляется до Nb2О5. Для этого оксида описано около 10 кристаллических модификаций. При обычном давлении стабильна β-форма Nb2О5.
При сплавлении Nb2О5 с различными оксидами получают ниобаты: Ti2Nb10О29, FeNb49О124. Ниобаты могут рассматриваться как соли гипотетических ниобиевых кислот. Они делятся на метаниобаты MNbO3, ортониобаты M3NbO4, пирониобаты M4Nb2O7 или полиниобаты M2O·nNb2O5 (M — однозарядный катион, n = 2-12). Известны ниобаты двух- и трехзарядных катионов.
Ниобий образует NbO2, NbO, ряд оксидов, промежуточных между NbO2,42 и NbO2,50 и близких по структуре к β-форме Nb2О5.
С галогенами ниобий образует пентагалогениды NbHal5, тетрагалогениды NbHal4 и фазы NbHal2,67 — NbHal3+x, в которых имеются группировки Nb3 или Nb2. Пентагалогениды ниобия легко гидролизуются водой.
В присутствии паров воды и кислорода NbCl5 и NbBr5 образуют оксигалогениды NbOCl3 и NbOBr3 — рыхлые ватообразные вещества.
При взаимодействии ниобия и графита образуются карбиды Nb2C и NbC, твёрдые жаропрочные соединения. В системе Nb — N существуют несколько фаз переменного состава и нитриды Nb2N и NbN. Сходным образом ведёт себя ниобий в системах с фосфором и мышьяком. При взаимодействии ниобия с серой получены сульфиды: NbS, NbS2 и NbS3. Синтезированы двойные фториды Nb и калия (натрия) — K2[NbF7].
Из водных растворов выделить электрохимически ниобий пока не удалось. Возможно электрохимическое получение сплавов, содержащих ниобий. Электролизом безводных солевых расплавов может быть выделен металлический ниобий.
Получение
Руды ниобия — обычно комплексные и бедны металлом. Рудные концентраты содержат Nb2O5: пирохлоровые — не менее 37 %, лопаритовые — 8 %, колумбитовые — 30—60 %. Большую их часть перерабатывают алюмо- или силикотермическим восстановлением на феррониобий (40—60 % Nb) и ферротанталониобий. Металлический ниобий получают из рудных концентратов по сложной технологии в три стадии:
вскрытие концентрата,
разделение ниобия и тантала и получение их чистых химических соединений,
восстановление и рафинирование металлического ниобия и его сплавов.
Основные промышленные методы производства ниобия и его сплавов — алюмотермический, натрийтермический, карботермический: из смеси Nb2O5 и сажи вначале получают при 1800 °C в атмосфере водорода карбид, затем из смеси карбида и пятиокиси при 1800—1900 °C в вакууме — металл; для получения сплавов ниобия в эту смесь добавляют окислы легирующих металлов; по другому варианту ниобий восстанавливают при высокой температуре в вакууме непосредственно из Nb2O5 сажей. Натрийтермическим способом ниобий восстанавливают натрием из K2NbF7, алюминотермическим — алюминием из Nb2O5. Компактный металл (сплав) производят методами порошковой металлургии, спекая спрессованные из порошков штабики в вакууме при 2300 °C либо электронно-лучевой и вакуумной дуговой плавкой; монокристаллы ниобия высокой чистоты — бестигельной электронно-лучевой зонной плавкой.
Применение
Применение и производство ниобия быстро возрастают, что обусловлено сочетанием таких его свойств, как тугоплавкость, малое сечение захвата тепловых нейтронов, способность образовывать жаропрочные, сверхпроводящие и др. сплавы, коррозионная стойкость, геттерные свойства, низкая работа выхода электронов, хорошие обрабатываемость давлением на холоде и свариваемость.
Основные области применения ниобия: ракетостроение, авиационная и космическая техника, радиотехника, электроника, химическое аппаратостроение, атомная энергетика.
Применение металлического ниобия
Из чистого ниобия или его сплавов изготовляют детали летательных аппаратов; оболочки для урановых и плутониевых тепловыделяющих элементов; контейнеры и трубы для жидких металлов; детали электролитических конденсаторов; «горячую» арматуру электронных (для радарных установок) и мощных генераторных ламп (аноды, катоды, сетки и др.); коррозионноустойчивую аппаратуру в химической промышленности.
Ниобием легируют другие цветные металлы, в том числе уран. Например, алюминий, если в него ввести всего 0,05 % ниобия, совсем не реагирует со щелочами[источник не указан 3980 дней], хотя в обычных условиях он в них растворяется. Сплав ниобия с 20 % меди обладает высокой электропроводностью и при этом он вдвое твёрже и прочнее чистой меди[источник не указан 3980 дней].
Ниобий и тантал используют для производства электролитических конденсаторов высокой удельной ёмкости. Тантал позволяет производить более качественные конденсаторы, чем металлический ниобий. Однако конденсаторы на основе оксида ниобия наиболее надёжны и устойчивы к возгоранию.
Ниобий и сплавы с танталом во многих случаях заменяют тантал, что даёт большой экономический эффект (ниобий дешевле и почти вдвое легче, чем тантал).
Феррониобий[13] вводят (до 0,6 % ниобия) в нержавеющие хромоникелевые стали для предотвращения их межкристаллитной коррозии (в том числе той, которая иначе началась бы после сварки нержавейки) и разрушения и в стали др. типов для улучшения их свойств.
Ниобий используется при чеканке коллекционных монет. Так, Банк Латвии утверждает, что в коллекционных монетах достоинством 1 лат наряду с серебром используется ниобий[14][15].
В производстве огнеупоров, керметов, специальных стёкол, нитрид, карбид, ниобаты.
Карбид ниобия (т. пл. 3480 °C) в сплаве с карбидом циркония и карбидом урана-235 является важнейшим конструкционным материалом для тепловыделяющих элементов твердофазных ядерных реактивных двигателей[источник не указан 526 дней].
Нитрид ниобия NbN используется для производства тонких и ультратонких сверхпроводящих плёнок с критической температурой от 5 до 10 К с узким переходом, порядка 0,1 К.
Один из активно применяемых сверхпроводников (температура сверхпроводящего перехода 9,25 К). Соединения ниобия имеют температуру сверхпроводящего перехода до 23,2 К (Nb3Ge).
Наиболее часто используемые промышленные сверхпроводники — NbTi и Nb3Sn.
Ниобий используется также в магнитных сплавах.
Применяется как легирующая добавка.
Нитрид ниобия используется для производства сверхпроводящих болометров.
Исключительная стойкость ниобия и его сплавов с танталом в перегретом паре цезия-133 делает его одним из наиболее предпочтительных и дешёвых конструкционных материалов для термоэмиссионных генераторов большой мощности.
↑Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1992. — Т. 3. — С. 249. — 639 с. — 50 000 экз. — ISBN 5—85270—039—8.