ฟังก์ชันเลขชี้กำลังฟังก์ชันเลขชี้กำลัง หรือ ฟังก์ชันเอกซ์โพเนนเชียล (อังกฤษ: exponential function) หมายถึงฟังก์ชัน ex เมื่อ e คือจำนวนที่ทำให้ฟังก์ชัน ex เท่ากับอนุพันธ์ของมันเอง (ซึ่ง e มีค่าประมาณ 2.718281828) [1][2] ฟังก์ชันเลขชี้กำลังถูกใช้เพื่อจำลองความสัมพันธ์ เมื่อการเปลี่ยนแปลงคงตัวในตัวแปรอิสระ ทำให้เกิดการเปลี่ยนแปลงตามสัดส่วนเดียวกันในตัวแปรตาม (เช่นการเพิ่มขึ้นหรือลดลงของอัตราร้อยละ) ฟังก์ชันนี้มักเขียนเป็น exp(x) โดยเฉพาะอย่างยิ่งเมื่อตัวแปรอิสระเขียนเป็นตัวยกไม่ได้ กราฟของฟังก์ชัน y = ex มีลักษณะตั้งชันขึ้นและมีอัตราเพิ่มค่าเร็วยิ่งขึ้นเมื่อ x เพิ่มขึ้น กราฟจะวางตัวอยู่เหนือแกน x เสมอ แต่เมื่อ x เป็นลบกราฟจะลู่เข้าแกน x ดังนั้นแกน x จึงเป็นเส้นกำกับแนวนอน (horizontal asymptote) เส้นหนึ่งของกราฟนี้ ความชันของกราฟแต่ละจุดมีค่าเท่ากับพิกัด y ของจุดนั้น ฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลังคือลอการิทึมธรรมชาติ ln(x) ด้วยเหตุนี้ตำราบางเล่มจึงอ้างถึงฟังก์ชันเลขชี้กำลังว่าเป็น แอนติลอการิทึม (antilogarithm) [3] ในบางกรณีคำว่า ฟังก์ชันเลขชี้กำลัง ก็มีใช้ในความหมายทั่วไปยิ่งขึ้น สำหรับฟังก์ชันต่าง ๆ ที่อยู่ในรูปแบบ cbx เมื่อ b คือฐานที่เป็นจำนวนจริงบวก ไม่จำเป็นต้องเป็น e ดูเพิ่มที่การเติบโตแบบเลขชี้กำลังสำหรับความหมายนี้ โดยทั่วไปตัวแปร x สามารถเป็นจำนวนจริง จำนวนเชิงซ้อน หรือแม้แต่วัตถุทางคณิตศาสตร์ต่าง ๆ ที่ต่างชนิดกันอย่างสิ้นเชิงก็ได้ ดูรายละเอียดที่ นิยามเชิงรูปนัย ภาพรวมฟังก์ชันเลขชี้กำลังจะเกิดขึ้น เมื่อใดก็ตามที่ปริมาณอย่างหนึ่งเติบโตหรือเสื่อมสลายในอัตราที่ได้สัดส่วนกับค่าปัจจุบัน ตัวอย่างสถานการณ์นี้เช่นดอกเบี้ยทบต้นต่อเนื่อง เมื่อ ค.ศ. 1683 ยาคอบ แบร์นูลลี (Jocob Bernoulli) พบว่ามันเป็นเช่นนั้นโดยข้อเท็จจริง [4] และนำไปสู่จำนวน e ที่ไม่ทราบค่าดังนี้ ต่อมา ค.ศ. 1697 โยฮันน์ แบร์นูลลี (Johann Bernoulli) ก็ได้ศึกษาแคลคูลัสของฟังก์ชันเลขชี้กำลังดังกล่าว [4] ถ้ามีเงินต้นจำนวน 1 และได้รับดอกเบี้ยในอัตรารายปี x โดยทบต้นรายเดือน ดังนั้นอัตราดอกเบี้ยที่ได้รับต่อเดือนจึงเป็น x/12 เท่าของมูลค่าปัจจุบัน แต่ละเดือนจึงมียอดรวมของเดือนก่อนหน้าคูณด้วย (1+x/12) ในที่สุดมูลค่าที่ได้เมื่อสิ้นปีจึงเท่ากับ (1+x/12)12 ถ้าคิดดอกเบี้ยทบต้นรายวันแทน มูลค่าจะกลายเป็น (1+x/365)365 และถ้ากำหนดให้จำนวนช่วงเวลาต่อปีเพิ่มขึ้นโดยไม่จำกัด จะนำไปสู่นิยามของลิมิตของฟังก์ชันเลขชี้กำลังดังนี้ นิยามนี้กำหนดไว้โดยออยเลอร์ [5] สิ่งนี้เป็นการอธิบายลักษณะเฉพาะของฟังก์ชันเลขชี้กำลังวิธีหนึ่ง ส่วนวิธีการอื่นจะเกี่ยวข้องกับอนุกรมและสมการเชิงอนุพันธ์ จากนิยามใด ๆ เหล่านี้สามารถแสดงได้ว่าฟังก์ชันเลขชี้กำลังเป็นไปตามเอกลักษณ์การยกกำลังพื้นฐาน
จึงเป็นที่มาว่าเหตุใดฟังก์ชันเลขชี้กำลังจึงสามารถเขียนในรูปแบบ ex ได้ อนุพันธ์ (อัตราการเปลี่ยนแปลง) ของฟังก์ชันเลขชี้กำลัง คือฟังก์ชันเลขชี้กำลังโดยตัวมันเอง หรืออีกนัยหนึ่งคือ ฟังก์ชันที่มีอัตราการเปลี่ยนแปลงได้สัดส่วนกับฟังก์ชันตัวเอง (แทนที่จะหมายถึงเท่ากับตัวเอง) สามารถแสดงได้ในรูปแบบฟังก์ชันเลขชี้กำลัง สมบัติของฟังก์ชันข้อนี้นำไปสู่การอธิบายการเติบโตและการเสื่อมสลายแบบเลขชี้กำลัง ฟังก์ชันเลขชี้กำลังขยายแนวคิดเป็นฟังก์ชันทั่ว (entire function) ชนิดหนึ่งบนระนาบเชิงซ้อน สูตรของออยเลอร์เกี่ยวข้องกับค่าของฟังก์ชันเมื่อส่งค่าอาร์กิวเมนต์ส่วนจินตภาพไปยังฟังก์ชันตรีโกณมิติ ฟังก์ชันเลขชี้กำลังก็มีสิ่งที่คล้ายกันสำหรับอาร์กิวเมนต์ที่เป็นเมทริกซ์ หรือแม้แต่สมาชิกของพีชคณิตแบบบานัค (Banach algebra) หรือพีชคณิตแบบลี (Lie algebra) นิยามเชิงรูปนัยฟังก์ชันเลขชี้กำลัง ex สามารถอธิบายลักษณะเฉพาะได้เทียบเท่ากันหลายวิธีการ โดยเฉพาะอย่างยิ่ง ฟังก์ชันเลขชี้กำลังอาจนิยามด้วยอนุกรมกำลังต่อไปนี้ [6] การใช้นิยามวิธีอื่นของฟังก์ชันเลขชี้กำลังก็จะให้ผลลัพธ์เหมือนกันเมื่อขยายเป็นอนุกรมเทย์เลอร์ ex อาจถูกนิยามให้เป็นคำตอบ y ของสมการนี้ ซึ่งเป็นรูปแบบที่พบได้น้อยกว่า ฟังก์ชันเลขชี้กำลังก็อาจหมายถึงลิมิตดังนี้ ดังที่ได้กล่าวไว้ในตอนต้น อนุพันธ์และสมการเชิงอนุพันธ์ความสำคัญหลักของฟังก์ชันเลขชี้กำลังในคณิตศาสตร์และวิทยาศาสตร์ เกิดจากสมบัติของอนุพันธ์ของมัน โดยเฉพาะอย่างยิ่ง นั่นคือ ex เป็นอนุพันธ์ของตัวเอง และเป็นตัวอย่างพื้นฐานอันหนึ่งของฟังก์ชันแบบพฟัฟฟ์ (Pfaffian function) ฟังก์ชันต่าง ๆ ที่อยู่ในรูปแบบ cex ซึ่ง c เป็นค่าคงตัว เป็นฟังก์ชันกลุ่มเดียวที่มีสมบัติเช่นนี้ (จากทฤษฎีบทปิการ์-ลินเดเลิฟ (Picard–Lindelöf theorem)) หรือกล่าวให้เจาะจงได้ว่า กำหนดให้ k เป็นค่าคงตัวจำนวนจริงใด ๆ ฟังก์ชัน f : R→R จะสอดคล้องกับเงื่อนไข f ′ = kf ก็ต่อเมื่อ f(x) = cekx สำหรับค่าคงตัว c บางจำนวน การอธิบายด้วยวิธีอื่นที่ให้ผลเหมือนกันเช่น
โดยข้อเท็จจริงแล้ว สมการเชิงอนุพันธ์หลายชนิดทำให้เกิดฟังก์ชันเลขชี้กำลัง รวมทั้งสมการชเรอดิงเงอร์ (Schrödinger equation) สมการลาปลัส (Laplace's equation) และสมการที่เกี่ยวข้องกับการเคลื่อนที่แบบฮาร์มอนิกเชิงเดียว (simple harmonic motion) ฟังก์ชันเลขชี้กำลังในฐานอื่นคือ ดังนั้นฟังก์ชันเลขชี้กำลังใด ๆ จึงเป็นพหุคูณค่าคงตัวของอนุพันธ์ของตัวเอง สำหรับฟังก์ชันเลขชี้กำลังในฐานอื่นที่มีค่าคงตัวประกอบในเลขชี้กำลัง สมการข้างต้นเป็นจริงสำหรับค่า c ทุกจำนวน แต่ผลลัพธ์ของอนุพันธ์เมื่อ c < 0 จะเป็นจำนวนเชิงซ้อน ถ้าอัตราการเติบโตหรือเสื่อมสลายของตัวแปรได้สัดส่วนกับขนาดของตัวแปร เช่นการเติบโตของประชากรอย่างไม่จำกัด ดอกเบี้ยทบต้นต่อเนื่อง หรือการสลายตัวของสารกัมมันตรังสี ตัวแปรนั้นจะสามารถเขียนในรูปแบบค่าคงตัวคูณด้วยฟังก์ชันเลขชี้กำลังของเวลา นอกเหนือจากนี้ ฟังก์ชันหาอนุพันธ์ได้ f(x) ชนิดใด ๆ เราสามารถหาอนุพันธ์ได้โดยใช้กฎลูกโซ่ดังนี้ เศษส่วนต่อเนื่องของ exเศษส่วนต่อเนื่องของ ex สามารถนำมาจากเอกลักษณ์ข้อหนึ่งของออยเลอร์ เศษส่วนต่อเนื่องนัยทั่วไปของ e2x/y ต่อไปนี้ มีค่าลู่เข้าอย่างรวดเร็ว สำหรับกรณีพิเศษเมื่อ x = y = 1 จะได้ ระนาบเชิงซ้อนฟังก์ชันเลขชี้กำลังสามารถนิยามบนระนาบเชิงซ้อนได้หลายรูปแบบเทียบเท่ากัน เช่นเดียวกับกรณีของจำนวนจริง การนิยามเหล่านี้บางอย่างเหมือนสูตรต่าง ๆ ของฟังก์ชันเลขชี้กำลังสำหรับจำนวนจริง หากกล่าวโดยเฉพาะเจาะจง เรายังสามารถใช้นิยามอนุกรมกำลังซึ่งค่าจริงถูกแทนที่ด้วยค่าเชิงซ้อน จากการใช้นิยามนี้ทำให้ง่ายต่อการแสดงว่า ยังคงเป็นจริงบนระนาบเชิงซ้อน นิยามอีกตัวอย่างหนึ่งเป็นการขยายแนวคิดของฟังก์ชันเลขชี้กำลังสำหรับจำนวนจริง ขั้นแรกระบุถึงสมบัติที่ต้องการ ส่วนแรก ex จะใช้ฟังก์ชันเลขชี้กำลังสำหรับจำนวนจริงตามปกติ ส่วนหลังใช้สูตรของออยเลอร์นิยาม ดังนั้นจึงจำเป็นต้องใช้การนิยามที่เกี่ยวข้องกับจำนวนจริงอย่างหลีกเลี่ยงไม่ได้ [7] เมื่อพิจารณาฟังก์ชันที่นิยามบนระนาบเชิงซ้อน ฟังก์ชันเลขชี้กำลังยังคงมีสมบัติที่สำคัญดังนี้ สำหรับจำนวนเชิงซ้อน z และ w ทุกจำนวน ฟังก์ชันเลขชี้กำลังเป็นฟังก์ชันทั่ว (entire function) ชนิดหนึ่ง เนื่องจากมันเป็นสาทิสสัณฐาน (holomorphic) บนระนาบเชิงซ้อนทั้งหมด ให้ผลลัพธ์เป็นจำนวนเชิงซ้อนได้ทุกจำนวนยกเว้นค่า 0 สิ่งนี้เป็นตัวอย่างหนึ่งของทฤษฎีบทเล็กของปิการ์ (Picard's little theorem) ซึ่งกล่าวว่า ฟังก์ชันทั่วที่ไม่เป็นค่าคงตัวใด ๆ ให้ผลลัพธ์เป็นจำนวนเชิงซ้อนได้ทุกจำนวน โดยอาจยกเว้นค่าใดค่าหนึ่ง ฟังก์ชันเลขชี้กำลังมีลักษณะเป็นคาบ (periodic) ซึ่งมีคาบบนจำนวนจินตภาพเป็น 2πi และสามารถเขียนแทนได้ด้วยสูตร เมื่อ a และ b เป็นค่าจริง (ดูเพิ่มที่สูตรของออยเลอร์) สูตรนี้เป็นตัวเชื่อมโยงฟังก์ชันเลขชี้กำลังเข้ากับฟังก์ชันตรีโกณมิติและฟังก์ชันไฮเพอร์บอลิก ดังนั้นฟังก์ชันมูลฐาน (elementary function) ทั้งหมดยกเว้นพหุนาม เป็นผลมาจากฟังก์ชันเลขชี้กำลังไม่ทางใดก็ทางหนึ่ง การขยายแนวคิดของลอการิทึมธรรมชาติไปยังจำนวนเชิงซ้อน ทำให้ ln(z) เป็นฟังก์ชันหลายค่า (multi-valued function) การยกกำลังสามารถเขียนให้อยู่ในรูปทั่วไปมากขึ้นดังนี้ สำหรับจำนวนเชิงซ้อน z และ w ทุกจำนวน การยกกำลังนี้จึงเป็นฟังก์ชันหลายค่าตามไปด้วย กฎการยกกำลังที่ระบุไว้ข้างต้นยังคงเป็นจริง ถ้าตีความว่าเป็นประโยคที่เกี่ยวกับฟังก์ชันหลายค่าอย่างถูกต้อง อย่างไรก็ตามกฎการคูณเลขชี้กำลังสำหรับจำนวนจริงบวก ไม่สามารถใช้ได้ในบริบทของฟังก์ชันหลายค่า นั่นคือ ดูเพิ่มที่ความผิดพลาดของเอกลักษณ์กำลังและลอการิทึมเกี่ยวกับปัญหาของการผสานรวมการยกกำลัง ฟังก์ชันเลขชี้กำลังเป็นการจับคู่ (map) เส้นตรงบนระนาบเชิงซ้อน ไปยังเส้นเวียนก้นหอยเชิงลอการิทึม (logarithmic spiral) บนระนาบเชิงซ้อนที่มีศูนย์กลางอยู่ที่จุดกำเนิด มีกรณีพิเศษสองกรณีได้แก่ เมื่อเส้นตรงขนานกับแกนจริง เส้นเวียนก้นหอยจะไม่เวียนใกล้เข้ามาหาตัวเอง และเมื่อเส้นตรงขนานกับแกนจินตภาพ เส้นเวียนก้นหอยจะกลายเป็นรูปวงกลมที่มีรัศมีขนาดหนึ่ง
การคำนวณ ab เมื่อทั้ง a และ b เป็นจำนวนเชิงซ้อนการยกกำลังเชิงซ้อน ab สามารถนิยามได้จากการแปลง a เป็นพิกัดเชิงขั้วและการใช้เอกลักษณ์ (eln(a))b = ab นั่นคือ อย่างไรก็ตาม เมื่อ b ไม่ใช่จำนวนเต็ม ฟังก์ชันนี้จะเป็นฟังก์ชันหลายค่า เพราะ θ ไม่ได้มีเพียงหนึ่งเดียว เมทริกซ์และพีชคณิตแบบบานัคนิยามอนุกรมกำลังของฟังก์ชันเลขชี้กำลัง สามารถเข้าใจได้ว่าเป็นเมทริกซ์จัตุรัส (สำหรับฟังก์ชันที่เรียกว่าเมทริกซ์เลขชี้กำลัง) และเป็นแนวคิดทั่วไปยิ่งขึ้นในพีชคณิตแบบบานัค B ในการกำหนดเช่นนี้ e0 = 1 และ ex จะมีตัวผกผันนั่นคือ e−x สำหรับ x ใด ๆ ใน B; ถ้า xy = yx ดังนั้น แต่เอกลักษณ์นี้อาจใช้ไม่ได้ถ้า x และ y ไม่สามารถสลับที่ได้ การนิยามแบบอื่นก็นำไปสู่ฟังก์ชันเดียวกัน ตัวอย่างเช่น ex สามารถนิยามเป็น หรือนิยามเป็น f(1) เมื่อ f : R→B เป็นคำตอบของสมการเชิงอนุพันธ์ f ′(t) = xf(t) โดยมีเงื่อนไขเริ่มต้นว่า f(0) = 1 ฟังก์ชันเลขชี้กำลังสองชั้นฟังก์ชันเลขชี้กำลังสองชั้น (double exponential function) อาจมีความหมายหนึ่งในสองอย่างดังต่อไปนี้
แฟกทอเรียลก็เติบโตเร็วกว่าฟังก์ชันเลขชี้กำลัง แต่ช้ากว่าฟังก์ชันเลขชี้กำลังสองชั้น ตัวอย่างของฟังก์ชันเลขชี้กำลังสองชั้นเช่น จำนวนแฟร์มาต์ (Fermat number) ที่ได้จากสูตร และจำนวนแมร์แซนสองชั้น (double Mersenne number) ที่ได้จากสูตร เป็นต้น ดูเพิ่มอ้างอิง
แหล่งข้อมูลอื่น
|