基础模型基础模型(英語:foundation model或base model)指一类大型机器学习模型[1],它们经大规模数据训练而成(通常以自监督学习或半监督学习方式进行)[2],以适应各种下游任务[3][4]。基础模型帮助实现了人工智能系统构建方式的重大革新,例如为聊天机器人和其他面向用户的人工智能提供支持。斯坦福人类中心人工智能研究所(Stanford Institute for Human-Centered Artificial Intelligence)旗下的基础模型研究中心(Center for Research on Foundation Models,简称CRFM)推广了“基础模型”这一术语的使用。[3] 早期的基础模型包括一些预训练语言模型,比如Google开发的BERT和各种早期的GPT基础模型,特别是OpenAI的“GPT-n”系列模型。这类用途广泛的模型可以通过进一步开发以适用于特定的任务或领域。[5] 除文本模型外,还先后诞生了各种视觉或多模式的基础模型,如DALL-E、Flamingo[6]、Florence和NOOR[7]等。视觉基础模型(visual foundation model,简称VFM)已与基于文本的大型语言模型相结合以构建适应特定任务的复杂模型。[8]此外,还有Meta AI开发的用于通用图像分割的Segment Anything[9]以及Google DeepMind开发的强化学习智能体Gato等。[10] [11] 参考文献
|
Index:
pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve