Haplogroup J-M304 is believed to have split from the haplogroup I-M170 roughly 43,000 years ago in Western Asia,[1] as both lineages are haplogroup IJsubclades. Haplogroup IJ and haplogroup K derive from haplogroup IJK, and only at this level of classification does haplogroup IJK join with Haplogroup G-M201 and Haplogroup H as immediate descendants of Haplogroup F-M89. J-M304 (Transcaucasian origin) is defined by the M304 genetic marker, or the equivalent 12f2.1 marker. The main current subgroups J-M267 (Armenian highlands origin) and J-M172 (Zagros mountains origin), which now comprise between them almost all of the haplogroup's descendant lineages, are both believed to have arisen very early, at least 10,000 years ago. Nonetheless, Y-chromosomes F-M89* and IJ-M429* were reported to have been observed in the Iranian plateau (Grugni et al. 2012).
On the other hand, it would seem to be that different episodes of populace movement had impacted southeast Europe, as well as the role of the Balkans as a long-standing corridor to Europe from the Near East is shown by the phylogenetic unification of Hgs I and J by the basal M429 mutation. This proof of common ancestry suggests that ancestral Hgs IJ-M429* probably would have entered Europe through the Balkan track sometime before the LGM. They then subsequently split into Hg J and Hg I in Middle East and Europe in a typical disjunctive phylogeographic pattern. Such a geographic hall[clarification needed] is prone to have encountered extra consequent gene streams, including the horticultural settlers. Moreover, the unification of haplogroups IJK creates evolutionary distance from F–H delegates, as well as supporting the inference that both IJ-M429 and KT-M9 arose closer to the Middle East than Central or East Asia.[citation needed]
Haplogroup J-M267 is found in its greatest concentration in the Arabian Peninsula. Outside of this region, haplogroup J-M304 has a significant presence in other parts of the Middle East as well as in North Africa, the Horn of Africa, and the Caucasus. It also has a moderate occurrence in Southern Europe, especially in central and southern Italy, Malta, Greece and Albania. The J-M410 subclade is mostly distributed in Asia Minor, Greece and southern Italy. Additionally, J-M304 is observed in Central Asia and South Asia, particularly in the form of its subclade J-M172. J-12f2 and J-P19 are also found among the Herero (8%).[4]
YFull[1] and FTDNA[10] have however failed to find J* people anywhere in the world although there are 2 J2-Y130506 persons and 1 J1 person from Soqotra. But Cerny 2009 study found 9 J1 persons in Soqotra/Socotra and majority of J* and no J2, hypothesizing a J1 founder effect in Socotra.
The following gives a summary of most of the studies which specifically tested for J-M267 and J-M172, showing its distribution in Europe, North Africa, the Middle East and Central Asia.
But not all studies agree on the point of origin. The Levant has been proposed but a 2010 study concluded that the haplogroup had a more northern origin, possibly Anatolia.
The origin of the J-P58 subclade is likely in the more northerly populations and then spreads southward into the Arabian Peninsula. The high Y-STR variance of J-P58 in ethnic groups in Turkey, as well as northern regions in Syria and Iraq, supports the inference of an origin of J-P58 in nearby eastern Anatolia. Moreover, the network analysis of J-P58 haplotypes shows that some of the populations with low diversity, such as Bedouins from Israel, Qatar, Sudan and the United Arab Emirates, are tightly clustered near high-frequency haplotypes. This suggests that founder effects with star burst expansion into the Arabian Desert (Chiaroni 2010).
In South Asia, J2-M172 was found to be significantly higher among Dravidian castes at 19% than among Indo-European castes at 11%. J2-M172 and J-M410 is found 21% among Dravidian middle castes, followed by upper castes, 18.6%, and lower castes 14%. (Sengupta 2006)[18] Subclades of M172 such as M67 and M92 were not found in either Indian or Pakistani samples which also might hint at a partial common origin.(Sengupta 2006)[18]
According to a genetic study in China by Shou et al., J2-M172 is found with high frequency among Uygurs (17/50 = 34%) and Uzbeks (7/23 = 30.4%), moderate frequency among Pamiris (5/31 = 16.1%), and also found J-M172 in Han Chinese (10%)[19] and low frequency among Yugurs (2/32 = 6.3%) and Monguors (1/50 = 2.0%). The authors also found J-M304(xJ2-M172) with low frequency among the Russians (1/19 = 5.3%), Uzbeks (1/23 = 4.3%), Sibe people (1/32 = 3.1%), Dongxiangs (1/35 = 2.9%), and Kazakhs (1/41 = 2.4%) in Northwest China.[20] Only far northwestern ethnic minorities had haplogroup J in Xinjiang, China. Uzbeks in the sample had 30.4% J2-M172 and Tajiks of Xinjiang and Uyghurs also had it.[21]
Phylogenetics
In Y-chromosome phylogenetics, subclades are the branches of haplogroups. These subclades are also defined by single nucleotide polymorphisms (SNPs) or unique event polymorphisms (UEPs).
Prior to 2002, there were in academic literature at least seven naming systems for the Y-Chromosome Phylogenetic tree. This led to considerable confusion. In 2002, the major research groups came together and formed the Y-Chromosome Consortium (YCC). They published a joint paper that created a single new tree that all agreed to use. Later, a group of citizen scientists with an interest in population genetics and genetic genealogy formed a working group to create an amateur tree aiming at being above all timely. The table below brings together all of these works at the point of the landmark 2002 YCC Tree. This allows a researcher reviewing older published literature to quickly move between nomenclatures.
There are several confirmed and proposed phylogenetic trees available for haplogroup J-M304. The scientifically accepted one is the Y-Chromosome Consortium (YCC) one published in Karafet 2008 and subsequently updated. A draft tree that shows emerging science is provided by Thomas Krahn at the Genomic Research Center in Houston, Texas. The International Society of Genetic Genealogy (ISOGG) also provides an amateur tree.
The Genomic Research Center draft tree
This is Thomas Krahn at the Genomic Research Center's Draft tree Proposed Tree for haplogroup J-P209 (Krahn & FTDNA 2013). For brevity, only the first three levels of subclades are shown.
This section needs expansion. You can help by adding to it. (January 2013)
This is the official scientific tree produced by the Y-Chromosome Consortium (YCC). The last major update was in 2008 (Karafet 2008). Subsequent updates have been quarterly and biannual. The current (2022) version is of the 2019/2020 update.
Al-Zahery, N.; Semino, O.; Benuzzi, G.; Magri, C.; Passarino, G.; Torroni, A.; Santachiara-Benerecetti, A.S. (September 2003). "Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations". Molecular Phylogenetics and Evolution. 28 (3): 458–472. Bibcode:2003MolPE..28..458A. doi:10.1016/S1055-7903(03)00039-3. PMID12927131.
Bosch, E.; Calafell, F.; Gonzalez-Neira, A.; Flaiz, C.; Mateu, E.; Scheil, H.-G.; Huckenbeck, W.; Efremovska, L.; Mikerezi, I.; Xirotiris, N.; Grasa, C.; Schmidt, H.; Comas, D. (July 2006). "Paternal and maternal lineages in the Balkans show a homogeneous landscape over linguistic barriers, except for the isolated Aromuns". Annals of Human Genetics. 70 (4): 459–487. doi:10.1111/j.1469-1809.2005.00251.x. PMID16759179. S2CID23156886.
Capelli, C.; Redhead, N.; Romano, V.; Cali, F.; Lefranc, G.; Delague, V.; Megarbane, A.; Felice, A. E.; Pascali, V. L.; Neophytou, P. I.; Poulli, Z.; Novelletto, A.; Malaspina, P.; Terrenato, L.; Berebbi, A.; Fellous, M.; Thomas, M. G.; Goldstein, D. B. (March 2006). "Population Structure in the Mediterranean Basin: A Y Chromosome Perspective". Annals of Human Genetics. 70 (2): 207–225. doi:10.1111/j.1529-8817.2005.00224.x. hdl:2108/37090. PMID16626331. S2CID25536759.
Capelli, Cristian; Brisighelli, Francesca; Scarnicci, Francesca; Arredi, Barbara; Caglia’, Alessandra; Vetrugno, Giuseppe; Tofanelli, Sergio; Onofri, Valerio; Tagliabracci, Adriano; Paoli, Giorgio; Pascali, Vincenzo L. (July 2007). "Y chromosome genetic variation in the Italian peninsula is clinal and supports an admixture model for the Mesolithic–Neolithic encounter". Molecular Phylogenetics and Evolution. 44 (1): 228–239. Bibcode:2007MolPE..44..228C. doi:10.1016/j.ympev.2006.11.030. PMID17275346.
Cinnioglu, Cengiz; King, Roy; Kivisild, Toomas; Kalfoglu, Ersi; Atasoy, Sevil; Cavalleri, Gianpiero L.; Lillie, Anita S.; Roseman, Charles C.; et al. (2004). "Excavating Y-chromosome haplotype strata in Anatolia". Human Genetics. 114 (2): 127–48. doi:10.1007/s00439-003-1031-4. PMID14586639. S2CID10763736.
Di Giacomo, F.; Luca, F.; Anagnou, N.; Ciavarella, G.; Corbo, R.M.; Cresta, M.; Cucci, F.; Di Stasi, L.; et al. (2003). "Clinal patterns of human Y chromosomal diversity in continental Italy and Greece are dominated by drift and founder effects". Molecular Phylogenetics and Evolution. 28 (3): 387–95. Bibcode:2003MolPE..28..387D. doi:10.1016/S1055-7903(03)00016-2. PMID12927125.
Di Giacomo, F.; Luca, F.; Popa, L. O.; Akar, N.; Anagnou, N.; Banyko, J.; Brdicka, R.; Barbujani, G.; et al. (2004). "Y chromosomal haplogroup J as a signature of the post-neolithic colonization of Europe". Human Genetics. 115 (5): 357–71. doi:10.1007/s00439-004-1168-9. PMID15322918. S2CID18482536.
Gonçalves, Rita; Freitas, Ana; Branco, Marta; Rosa, Alexandra; Fernandes, Ana T.; Zhivotovsky, Lev A.; Underhill, Peter A.; Kivisild, Toomas; Brehm, Antonio (2005). "Y-chromosome lineages from Portugal, Madeira and Açores record elements of Sephardim and Berber ancestry". Annals of Human Genetics. 69 (Pt 4): 443–454. doi:10.1111/j.1529-8817.2005.00161.x. hdl:10400.13/3018. PMID15996172. S2CID3229760.
Mirabal S, Varljen T, Gayden T, et al. (July 2010). "Human Y-chromosome short tandem repeats: A tale of acculturation and migrations as mechanisms for the diffusion of agriculture in the Balkan Peninsula". American Journal of Physical Anthropology. 142 (3): 380–390. doi:10.1002/ajpa.21235. PMID20091845.
Robino, C.; Crobu, F.; Di Gaetano, C.; Bekada, A.; Benhamamouch, S.; Cerutti, N.; Piazza, A.; Inturri, S.; Torre, C. (2008). "Analysis of Y-chromosomal SNP haplogroups and STR haplotypes in an Algerian population sample". International Journal of Legal Medicine. 122 (3): 251–255. doi:10.1007/s00414-007-0203-5. PMID17909833. S2CID11556974.
Shen, Peidong; Lavi, Tal; Kivisild, Toomas; Chou, Vivian; Sengun, Deniz; Gefel, Dov; Shpirer, Issac; Woolf, Eilon; et al. (2004). "Reconstruction of patrilineages and matrilineages of Samaritans and other Israeli populations from Y-Chromosome and mitochondrial DNA sequence Variation". Human Mutation. 24 (3): 248–60. doi:10.1002/humu.20077. PMID15300852. S2CID1571356.
Underhill, Peter A.; Shen, Peidong; Lin, Alice A.; Jin, Li; et al. (November 2000). "Y chromosome sequence variation and the history of human populations". Nature Genetics. 26 (3): 358–361. doi:10.1038/81685. PMID11062480. S2CID12893406.
^This table shows the historic names for J-M304 (a.k.a. J-P209, and J-12f2.1) in published peer reviewed literature. Note that in Semino 2000 Eu09 is a subclade of Eu10 and in Karafet 2001 24 is a subclade of 23.
YCC 2002/2008 (Shorthand)
J-M304 (a.k.a. J-12f2.1 or J-P209)
Jobling and Tyler-Smith 2000
9
Underhill 2000
VI
Hammer 2001
Med
Karafet 2001
23
Semino 2000
Eu10
Su 1999
H4
Capelli 2001
B
YCC 2002 (Longhand)
J*
YCC 2005 (Longhand)
J
YCC 2008 (Longhand)
J
YCC 2010r (Longhand)
J
^This table shows the historic names for J-M267 and its earlier discovered and named subclade J-M62 in published peer reviewed literature.
YCC 2002/2008 (Shorthand)
J-M267
J-M62
Jobling and Tyler-Smith 2000
-
9
Underhill 2000
-
VI
Hammer 2001
-
Med
Karafet 2001
-
23
Semino 2000
-
Eu10
Su 1999
-
H4
Capelli 2001
-
B
YCC 2002 (Longhand)
-
J1
YCC 2005 (Longhand)
J1
J1a
YCC 2008 (Longhand)
J1
J1a
YCC 2010r (Longhand)
J1
J1a
^This table shows the historic names for J-M172 in published peer reviewed literature. Note that in Semino 2000 Eu09 is a subclade of Eu10 and in Karafet 2001 24 is a subclade of 23.
^Van Oven M, Van Geystelen A, Kayser M, Decorte R, Larmuseau HD (2014). "Seeing the wood for the trees: a minimal reference phylogeny for the human Y chromosome". Human Mutation. 35 (2): 187–91. doi:10.1002/humu.22468. PMID24166809. S2CID23291764.
^K-M2313*, which as yet has no phylogenetic name, has been documented in two living individuals, who have ethnic ties to India and South East Asia. In addition, K-Y28299, which appears to be a primary branch of K-M2313, has been found in three living individuals from India. See: Poznik op. cit.; YFull YTree v5.08, 2017, "K-M2335", and; PhyloTree, 2017, "Details of the Y-SNP markers included in the minimal Y tree" (Access date of these pages: 9 December 2017)
^ Haplogroup S, as of 2017, is also known as K2b1a. (Previously the name Haplogroup S was assigned to K2b1a4.)
^ Haplogroup M, as of 2017, is also known as K2b1b. (Previously the name Haplogroup M was assigned to K2b1d.)