קרינה מייננת
קרינה מייננת היא קרינת חלקיקים או גלים אלקטרומגנטיים בעלי אנרגיה גבוהה המסוגלים ליינן חומר, כלומר, לשחרר אלקטרונים מתוך אטומים או מולקולות. יכולת היינון של חלקיק או פוטון תלויה באנרגיה שלו בלבד ולא בכמות החלקיקים באזור אחד. כלומר, גם כמות גדולה של חלקיקים או פוטונים בעלי אנרגיה נמוכה עדיין מהווים קרינה בלתי מייננת אם כל חלקיק או פוטון לבדו אינו מסוגל ליינן.[2] קרינה מייננת יכולה להיות קרן של חלקיקים בעלי מסה ומטען חשמלי, כגון אלקטרונים או פרוטונים, חלקיקים בעלי מסה ללא מטען חשמלי, כגון נייטרונים, או חלקיקים שאינם בעלי מסה או מטען חשמלי כגון פוטונים. דוגמאות של קרינה מייננת הן: קרינת אלפא, קרינת בטא או קרינת נייטרונים. היכולת של קרינה אלקטרומגנטית ליינן משתנה על פני הספקטרום האלקטרומגנטי. קרינה באנרגיות גבוהות בתחום של קרינת רנטגן או קרינת גמא מייננות כמעט כל אטום או מולקולה. קרינה קיצונית בתחום על-סגול מייננת מגוון גדול של אטומים ומולקולות (כולל רקמות ביולוגיות), ואילו אור נראה וקרינה בתחום הנמוך מכך אינם מייננים את מרבית המולקולות. גלי מיקרו, גלי רדיו והשדה האלקטרומגנטי של כבלי מתח גבוה הם דוגמאות לקרינה בלתי מייננת. לקרינה מייננת שימושים רבים ברפואה, במחקר ופיתוח, בבנייה ובתחומים נוספים. חשיפה לקרינה מייננת יכולה להיות מסוכנת לבריאות. יינונים רבים מידי המתרחשים במערכת ביולוגית יכולים להוות גורם הרסני למערכת, משום שהיינון גורם לנזק חמור לחומר הגנטי (DNA) של תאים יחידים. בנוסף לנזק המיידי, רקמות שנחשפות לקרינה מייננת סובלות מנזק מאוחר, המתבטא בעיקר בהתפתחותם של גידולים סרטניים. חשיפה לכמות גדולה של קרינה מייננת יכולה לגרום למוטציות בצאצאים הנולדים לאחר החשיפה לקרינה. סוגי קרינהסוגים שונים של קרינה נוצרים כתוצאה מדעיכה רדיואקטיבית, היתוך גרעיני, ביקוע גרעיני, קרינה מחומרים שחוממו לחום גבוה מאוד (קרינת גוף שחור) ועל ידי מאיצי חלקיקים. חלקיק מסוגל ליינן רק כאשר הוא בעל אנרגיה גבוהה, אז יש ביכולתו לקיים אינטראקציה עם האטומים של החומר דרכו הוא עובר. היות שפוטונים מקיימים אינטראקציה עם חלקיקים בעלי מטען חשמלי, פוטונים בעלי אנרגיה גבוהה מהווים קרינה מייננת. סף האנרגיה בה היינון מתחיל ברקמות ביולוגיות הוא בתחום העל-סגול של הספקטרום האלקטרומגנטי; כוויית שמש היא תוצאה של אינטראקציה מעין זו. חלקיקים מאסיביים בעלי מטען חשמלי, כגון אלקטרונים, פוזיטרונים וחלקיקי אלפא, מקיימים אף הם אינטראקציה עם חלקיקים בעלי מטען חשמלי כגון אטומים או מולקולות. לכן, אם האנרגיה שלהם מעל סף אנרגיית היינון, הם מייננים בצורה ישירה. אף על פי שלנייטרונים אין מטען חשמלי ושהם אינם מקיימים אינטראקציה עם אלקטרונים, נייטרונים בעלי אנרגיה גבוהה (שנקראים נייטרונים מהירים) מסוגלים לבצע אינטראקציה עם פרוטונים ואף עם נייטרונים אחרים. לכן, גם הם למעשה מייננים, גם אם בצורה עקיפה. אינטראקציה זו דומה להתנגשות בין כדורי ביליארד - הכדור הפוגע עוצר והכדור הנפגע מתחיל לנוע ולוקח איתו את האנרגיה של הכדור הראשון. בצורה כזו, הנייטרונים הפוגעים מייצרים זרם של פרוטונים בעלי אנרגיה גבוהה, המייננים, בתורם, את האטומים בסביבה. סוג אינטראקציה נוסף המתרחש בין נייטרון לחומר הוא בליעת הנייטרון על ידי אטום. כשגרעין אטום בולע נייטרון שפוגע בו, האטום הופך (בדרך כלל) לאיזוטופ רדיואקטיבי, המקרין בשעת הדעיכה הרדיואקטיבית שלו. לכן, קרן של נייטרונים מהירים מהווה קרינה מייננת. בתמונה השלישית, קרני גמא מיוצגות על ידי קו גלי וחלקיקים בעלי מטען חשמלי ונייטרונים מיוצגים על ידי קווים ישרים. העיגולים הקטנים מייצגים מקומות בהן קיימים תהליכי יינון. כשקרני אלפא עוברות בחומר הן מייננות את האטומים שבמסלולם. תוצרי היינון הם בדרך כלל יונים אטומים חיוביים ואלקטרונים חופשיים. כאשר חלקיקי בטא בעלי אנרגיה גבוהה עוברים דרך חומר הם מייצרים קרינת בלימה (Bremsstrahlung) או אלקטרונים משניים (שנקראים קרני δ), ושני אלו מייננים את החומר בסביבתם. בשונה מקרני אלפא ומקרני בטא, קרני גמא אינן מייננות את החומר (אלא רק את האלקטרונים שבתוך האטום) שנמצא על מסלולן. הן מקיימות שלושה סוגי אינטראקציה עם סביבתן: האפקט הפוטואלקטרי, אפקט קומפטון ויצירת זוג. בתמונה התחתונה משמאל ("אינטראקציה של קרינה מייננת עם חומר") ניתן לראות דוגמה לשתי התנגשויות קומפטון, זו אחר זו. בכל התנגשות כזו, קרינת הגמא (=הפוטון) מעבירה חלק מן האנרגיה שלה לאלקטרון, ולאחר מכן ממשיכה בכיוון חדש, עם אנרגיה פחותה. בתחתית תמונה זו מופיע נייטרון המתנגש בפרוטון; הפרוטון משתחרר מהגרעין בו הוא נמצא ונהפך לפרוטון רתיעה מהירה, המיינן את החומר על מסלולו. בסוף מסלולו נלכד הנייטרון על ידי גרעין אטומי בריאקציה שמסומנת (n,γ) - כלומר כליאת נייטרון ויצירת פוטון. האלקטרונים והיונים הנוצרים על ידי מעבר קרינה מייננת מסוגלים לגרום נזק לרקמות ביולוגיות חיות. כאשר מנת הקרינה מספיק גבוהה ניתן לראות השפעה מיידית, בצורת הרעלת קרינה. מנות נמוכות יותר גורמות לנזק מאוחר, כגון סרטן וגידולים ממאירים. ההשפעה של מנות קרינה נמוכות מאוד (בין אם ממקורות טבעיים כגון קרינה קוסמית וקרינה מהתפרקות הגז הטבעי רדון, ובין אם ממקורות מלאכותיים כמו קרינת-X רפואי ופליטות מתחנות כוח גרעיניות) שנויה במחלוקת. דו"ח של המועצה למחקר לאומי של ארצות הברית משנת 2005 הסיק כי הסכנה ממקורות אלו ובמינונים אלו היא יחסית נמוכה.[3] מצד שני, בשנת 2008 פרסם משרד הבריאות הישראלי הנחיה לכל רופאיו להקטין כמה שאפשר את חשיפת המטופלים לקרינה מייננת כאשר הדבר לא נחוץ לאבחון הרפואי.
ההחלטה התבססה על שלושה מחקרים שהתפרסמו בשנת 2007:
חומרים רדיואקטיביים בדרך כלל פולטים קרינת אלפא, קרינת בטא וקרני גמא. ניתן לעצור קרינת אלפא וקרינת בטא בקלות - קרינת אלפא נעצרת על ידי דף נייר וקרינת בטא נעצרת על ידי פיסה דקה של אלומיניום. לכן, אם מקור אלפא או בטא נמצא מחוץ לגוף, רוב הקרינה נבלמת בעור או בשרירים ולא מגיעה לאיברים הפנימיים. רוב הנזק שנובע מקרינת אלפא ובטא מתרחש כאשר חומרים אלו נוצרים בתוך הגוף עצמו או כשהם מוכנסים לגוף, למשל על ידי שאיפה, בליעה או אכילה. לעיתים, החדרת כמות קטנה של חומר רדיואקטיבי יכולה לגרום לנזק רב אם כל החומר מתרכז באיבר מסוים. לדוגמה, הגוף מתייחס ליוד רדיואקטיבי בדיוק כמו ליוד שאינו רדיואקטיבי ומרכז אותו בבלוטת התריס; הצטברות של יוד רדיואקטיבי בבלוטת התריס יכולה להוביל לסרטן בלוטת התריס. קרני גמא מייננות פחות מקרני אלפא ובטא, לכן הקרן נחלשת פחות עבור כל ס"מ שהיא עוברת בחומר (לעומת חלקיק טעון). כתוצאה מכך הגנה מפני קרני גמא מצריכה מיסוך עבה יותר. חדר לטיפול ברדיותרפיה מוקף קירות עבים ביותר הנועדים למיסוך הצוות מן הקרינה. הנזק הנגרם על ידי קרינת גמא דומה לנזק שנגרם על ידי קרני רנטגן וכולל גם כוויות וסרטן הנגרם ממוטציות. תאי הזיווג באדם מתנגדים למוטציות בשתי דרכים: על ידי תיקון הטעות ב-DNA או על ידי אפופטוזה של התא שסבל ממוטציה. קרינה בלתי מייננת נחשבת כבלתי מזיקה כל עוד עוצמתה אינה מספיק גבוהה כדי לגרום לחימום יתר של הרקמות בהן היא עוברת. שימושים של קרינה מייננתאף על פי שיש הרבה שימושים חיוביים לקרינה מייננת, חשיפה למנת יתר של קרינה עלולה להזיק לבריאות. עובדה זאת לא הייתה תמיד ידועה, אפילו בקרב מומחים. מותה של כלת פרס נובל מארי קירי מאנמיה אפלסטית (aplastic anemia), נבעה כנראה מחשיפתה לקרינה מייננת בעת ממחקריה על חומרים רדיואקטיביים. בעבר היה נהוג בארצות הברית להשתמש במכשירי רנטגן לבדוק התאמת נעליים לרגלי ילדים; שימוש זה הופסק כשהתגלה הקשר בין קרינה לסרטן. היות שקרינה מייננת חודרת לתוך חומרים רבים, יש לה שימושים רבים:
רדיוגרפיה נמצאת בשימוש ביישומים תעשייתיים רבים כגון גלוי פגמים פנימיים בחומרים שונים. החומר המיועד לשיקוף מונח בין מקור קרני רנטגן לבין סרט. על ידי פיתוח הסרט לאחר חשיפה לזמן מסוים מתקבלת תמונה המהווה השלכה דו-ממדית של האובייקט.
פעילותם של חיישני מדידה מבוססת על העובדה שעוצמת קרן גמא נחלשת בצורה אקספוננציאלית עת שהקרן חודרת לתוך חומר (לכל חומר יש מקדם החלשה אופייני. המקדם נקרא עובי המחצית); מקור קרינה וגלאי ממוקמים בשני צדי החומר. כמות ההיחלשות מעידה על עובי החומר.
שימושים ביולוגיים ורפואיים של קרינה מייננתהשימושים העיקריים של קרינה מייננת בתחום הביולוגיה הם עידוד יצירת מוטציות ועיקור (סטריליזציה). לדוגמה, השימוש בקרינה מייננת לעידוד יצירת מוטציות על מנת לשפר מינים קיימים או לייצר מינים חדשים כגון זנים של חרקים עקורים. זכרי החרקים מוקרנים במנת קרינה שהופכת אותם לעקרים והם משוחררים בשדה הנגוע באותו סוג של חרקים פוריים. אם החרקים העקורים מנצחים את חרקים הפוריים, הבעיה בשדה תיפתר לאחר דור אחד משום שהחרקים העקורים אינם מסוגלים להעמיד צאצאים. ישנם יתרונות ברורים לעיקור ציוד רפואי (מחטים, סכינים וכו') ומזון על ידי קרינה. יתרונה של קרינה כשיטת עיקור לעומת שיטות מתחרות היא שניתן לסגור את הציוד בצורה הרמטית בתוך קופסאות פלסטיק לפני ההקרנה וכך נשמר המצב הסטרילי אחר ההקרנה. כשמזון נחשף לקרינה במנה מספקת, כל החיידקים במזון מושמדים. לדוגמה, אפשר לשמור חתיכת עוף שהוקרנה למשך חדשים רבים ללא קירור, מבלי שתתקלקל, בתנאי שהעוף נשאר סגור בתוך שקית. מדינות רבות חקקו חוקים המווסתים את תהליך הקרנת המזון כדי למנוע מצב של יצירת רדיואקטיביות מושרית (induced radiation) במזון. חשיפת שתלי צמחים צעירים למנת קרינה מייננת נמוכה מאיצה את קצב גידולם; אך מנת יתר מאיטה את קצב גידולם. אלקטרונים, קרני גמא, ויונים אטומיים נמצאים בשימוש רדיותרפיה עבור טיפול בגידולים סרטניים. ליתר פירוט ראו בערכים: רדיותרפיה, טלתרפיה וברכיתרפיה. קרינת רקע טבעיתקרינת הרקע הטבעית באה בעיקר מארבעה מקורות: קרינה קוסמית, קרינת השמש, קרינה ממקורות טבעיים ורדון. קרינה קוסמיתכדור הארץ, וכל החיים עליו, עומדים תחת קרינה מתמדת שמקורה מחוץ למערכת השמש שלנו. קרינה זאת עשויה בעיקר מיונים חיוביים, מפרוטונים בודדים עד גרעינים כבדים כגון ברזל. האנרגיה של חלקיקים אלו גדולה בהרבה מהאנרגיה של חלקיק שעובר תאוצה במאיצים הגדולים שיש בעולם. כשחלקיק כזה פוגע באטמוספירה של כדור הארץ, הוא מייצר את הקרינה המשנית שמגיעה עד האדמה עצמה; 'גשם' של קרני-X, מיואונים, פרוטונים, קרני אלפא, פיונים, אלקטרונים ונייטרונים. מנת הקרינה מקרינה זאת באה בעיקר ממיואונים, נייטרונים ואלקטרונים, וקצב המנה (קצב צבירת מנה מקרינה מייננת) משתנה על פני כדור הארץ, בהתאם לעוצמת השדה המגנטי, הגובה והמקום במחזור של השמש. קצב המנה במטוס כל כך גבוה שעל פי דו"ח האו"ם (UNSCEAR) משנת 2000, צוותי אוויר נחשפים למנה הכי גבוהה בין כל העובדים במשק, כולל עובדי קרינה והעובדים בכורים הגרעיניים. קרינת השמשאף על פי שרוב קרינת השמש הוא בתחום של אור נראה (היינו קרינה לא מייננת), השמש גם פולטת חלקיקים בעלי אנרגיה גבוהה. רמת הקרינה על כדור הארץ מחלקיקים אלו תלויה במיקום היחסי של כדור הארץ במסלולו השנתי מסביב לשמש. רוב הקרינה היא בצורת פרוטונים בעלי אנרגיה יחסית נמוכה (לעומת הקרינה הקוסמית), בתחום האנרגיה בין 10 עד 100 KeV. עוצמת הקרינה וגם הספקטרום שלה אינם קבועים - עוצמתה גדלה לאחרי solar flare בו בזמן שעוצמת הקרינה הקוסמית יורדת קצת.[5] ההסבר לתופעות הוא שכתוצאה מ'רוח השמש' (solar wind), השדה המגנטי של השמש מתארך ומסכך את כדור הארץ יותר טוב מפני הקרינה הקוסמית. החלק המיינן של קרינת השמש זניח לעומת מקורות טבעיים אחרים של קרינה מייננת. מקורות קרינה ארציים טבעייםהרבה חומרים על כדור הארץ מכילים אטומים רדיואקטיביים, לפעמים בכמויות מזעריות. רוב המנה ממקורות ארציים בא ממקורות פולטי גמא שנמצאים בקירות וברצפות הבית, ומאדמה וסלעים מחוץ לבית. המקורות העיקריים (ביחס למנה הטבעית) הם אשלגן, אורניום ותוריום. היות שמקורות אלו הם רדיואקטיביים, עוצמתם נחלשת כל הזמן (מאז יצירת כדור הארץ) - כיום קיים רק ½ מכמות האיזוטופ הרדיואקטיבי K40 לעומת הכמות שהייתה קיימת בזמן יצירת החיים על פני כדור הארץ. רדוןהאיזוטופ הרדיואקטיבי של רדון, 222Rn, נוצר על ידי הדעיכה הרדיואקטיבית של רדיום 226Ra, שהוא עצמו נוצר מדעיכה רדיואקטיבית של אורניום 238U. היות שרדון הוא גז בטמפרטורות רגילות, הרדון שנמצא בסלעים מכילי אורניום משתחרר בדיפוזיה והגז מצטבר בבתים שמבודדים היטב מן הסביבה החיצונית (בעיקר במרתפים). לפעמים, גז רדון הוא הגורם העיקרי למנה הטבעית של קרינה מייננת. עוצמת קרינה זאת משתנה בהרבה ממקום למקום. יש המשערים שגז הרדון הוא הגורם השני בחשיבותו לסרטן ריאות בארצות הברית.[6] מקורות קרינה מלאכותייםביחס לנזקי קרינה יש השפעה זהה בין מקורות קרינה טבעיים לבין מקורות קרינה שנוצרו על ידי בני אדם. הוועדה לוויסות הגרעין (NRC) בארצות הברית מחייבת את בעלי רישיון מטעמה להגביל את חשיפת עובדיהם המבוגרים למנה פחות מ-50 מיליסיורט לשנה. החשיפה הממוצעת לו חשוף האדם על פני כדור הארץ היא 2–3 מיליסיורט לשנה. החשיפה הממוצעת בארצות הברית היא 3.6 מיליסיורט לשנה; כ-80% מזה נובע מחשיפה למקורות טבעיים והשאר נובע ממקורות מעשה ידי אדם כגון קרני רנטגן רפואיים וסריקות טומוגרפיה ממוחשבת. החשיפה הממוצעת בבריטניה יותר נמוכה - רק 2.2 מיליסייורט. כאמור, חלק ניכר מן החשיפה ממקורות טבעיים בא מגז רדון, שיוצא מסלעי היסוד של בניינים ומצטבר ביסודות של בתים שאנם מאווררים היטב. רמת קרינת הרקע משתנה בהרבה ממקום למקום - מ-1.5 מיליסיורט לשנה במקומות מסוימים עד יותר מ-100 מיליסיורט לשנה במקומות אחרים. בחלקים מן העיר רמסר שבצפון איראן המנה מקרינת הרקע מגיעה ל-260 מיליסיורט לשנה. אף על פי שאנשים גרים באזור זה דור אחרי דור, לא רואים בהם שום סימן לשינויים גנטיים לעומת עמיתיהם שגרים במקומות עם רמות קרינה נמוכות יותר. עובדה זאת מובילה למסקנה שרמות קרינה גבוהות אבל יציבות גורמות לפחות נזק בבני אדם מהתפרצויות פתאומיות של קרינה. חלק מן המקורות האל-טבעיים גורמים נזק לגוף האדם על ידי קרינה ישירה; אחרים גורמים לזיהום רדיואקטיבי שנכנס לגוף ומקרין את הגוף מבפנים. פרוצדורות רפואיות כגון רנטגן אבחנתי, רפואה גרעינית ורדיותרפיה הם המקורות העיקריים בהם הציבור נחשף לקרינה מייננת. המקורות העיקריות בשימוש ברפואה גרעינית הם: Ir192 (אירידיום), Co60 (קובלט), Tc99 (טכנציום), I131 (יוד), ו-Cs137 (צסיום). היות שצוות בית החולים נזהר מאוד עם החומרים אלו, מעט מאוד מן החומר הזה נכנס לסביבה הציבורית. הציבור הרחב נחשף לקרינה ממוצרי צריכה כגון טבק (שכולל Po210) חומרי בניין, דלקים (גז ופחם) זכוכית למשקפיים, צגי טלוויזיות, שעונים עם טריטיום, מכונות שיקוף בנמלי תעופה, גלאי עשן, חומרי בניין בכביש, שפופרות אלקטרון, ומציתים למנורות פלואורסצנטיות. ברמה נמוכה יותר, הציבור חשוף במידת מה לקרינה מכל אורך המסלול של תחנות כוח גרעיניות - מן החפירה של הדלק הגרעיני ועיבודו עד הטיפול בקורות הגרעיניות המשומשות. בדרך כלל, החשיפה שנובע ממקורות אלו כל כך נמוכה שהדוגלים בשימוש בתחנות כוח גרעיניות משווים את סכנתם לסיכון שנובע מלבישת מכנסיים לשתי דקות (החום הנוסף מגדיל בצורה קטנה מאוד את הסיכוי לגרימת מוטציה בתא). מצד שני, מתנגדי תחנות כוח גרעיניות מתבססים על מודל סרטן אחר (יותר קונסרבטיבי) וטוענים ששימוש בדלק גרעיני גורם עוד כמה מאות מקרים של סרטן בשנה. בנשק גרעיני, קרני הגמא שנוצרים בפיצוץ הם הגורם העיקרי למקרי מוות. במרחק קרוב למרכז הפיצוץ, קצב החשיפה עשוי להיות יותר מ-300 גריי לשעה. לקנה מידה, מנה של כ-4 גריי (בערך פי 15,000 מהמנה השנתית הממוצעת) גורם למוות של יותר מ-50% מהאנשים שנחשפים לה שלא מקבלים טיפול רפואי. אנשים שעשויים להיות חשופים לקרינה במהלך עבודתם מנטרים את כמות חשיפתם על ידי חיישנים קטנים, בגודל של כיס, עט או טבעת, שנקראים 'דוסימטרים' (dosimeters). התעשיות שבהן יש סכנת חשיפה לקרינה מייננת כוללות:
השפעות ביולוגיות של קרינה מייננתברמות קרינה נמוכות, השפעת קרינה מייננת יכולה להיות כל כך מזערית עד שכמעט בלתי אפשרי לגלותה על ידי מחקרים אפידמיולוגיים. עוד מחסום שמקשה על הזיהוי של נזקי קרינה הוא מנגנוני הגוף שמתקנים נזקים אלו. ההשפעה הביולוגית של קרינה על תאים חיים יכולה להתרחש בכמה מסלולים, כולל:
קרינה מייננת עלולה להזיק מאחר שהיא גורמת ליינון ברקמות שנחשפות לקרינה. יינון זה עלול לפגוע במולקולות שעוברות יינון. נזק נוסף יכול להגרם כתוצאה מהרדיקלים החופשיים שנוצרים, שתוקפים תאים באזור. ההשפעה הכוללת היא שמולקולות ביולוגיות סובלות מהפרעה שמשפיעות על תפקודם. לרוב, הגוף יודע לתקן נזקים אלה בעצמו. לעיתים, כמות הנזק עולה על יכולת הגוף לתקנו, מה שעלול לגרום גם למוטציות בתאים בתהליך הרבייה. שני מחקרים גדולים שניסו למדוד את השפעתן של מנות גבוהות של קרינה מייננת הם: מחקר על שורדי ההתקפה האטומית ביפן בשנת 1945 ומחקר על עובדי שירותי ההצלה שנכחו בתאונה באסון צ'רנוביל בשנת 1986. בתאונה זו, 134 עובדי המכון וכבאים נחשפו לרמות קרינה גבוהות של 700 עד 3,400 מיליסייורט (70,000-340,000 מילירם) וסבלו ממחלת קרינה חריפה. מתוכם, 28 אנשים מתו כתוצאה מהקרינה. נחקרו גם התוצאות של תאונה זו לטווח הארוך. נמצא קשר מובהק בין אסון צ'רנוביל למספר המוגדל של מקרי סרטן בלוטת התריס, בעיקר בילדים, שנכחו באזורים הנגועים - תוספת של בערך ;1,800 מקרים של סרטן.[7] בחלק מן המקרים הסרטן הוביל למותם של האנשים. ישנו ויכוח האם היו השפעות נוספות באזורים הנגועים. ברמת הרקמה נצפו תופעות נוספות, מסובכות יותר. תופעות אלה כוללות: הורמזיסעל פי תיאורית ההורמזיס (hormesis), או הורמזיס קרינתי, חשיפה לרמת קרינה מייננת נמוכה (הקרובה לרמת הרקע הטבעית) עוזרת לתאים לחסן את עצמם מפני נזק אפשרי ל-DNA שלהם. נזק כזה יכול להיגרם מגורמים אחרים, כגון רדיקלים חופשיים או מנות גדולות של קרינה מייננת. על כן, חשיפה כזו מקטינה למעשה את הסיכון לחלות בסרטן. ליניארי ללא ערך סףהתאוריה שכן אומצה נקראת 'מודל ליניארי ללא ערך סף' (LNT = linear no threshold), על פיה הסיכון לחלות בסרטן גדל ביחס ישיר לרמת החשיפה לקרינה מייננת. חשיפה כרונית לקרינה מייננתחשיפה לקרינה מייננת במשך זמן ארוך נקראת חשיפה כרונית. למשל, החשיפה לקרינת הרקע היא חשיפה כרונית. קשה לכמת את רמת החשיפה לקרינת הרקע, היות שרמת הקרינה תלויה מאוד במקומו של האדם על פני כדור הארץ, במקצועו (למשל אם הוא מרבה לטוס במסגרת עיסוקו) ובגורמים נוספים. חשיפה חריפה (אקוטית) לקרינה מייננתחשיפה חריפה (אקוטית) היא חשיפה לקרינה מייננת בעוצמה גבוהה במשך זמן קצר. מאחר שאין הגדרה מדויקת, הסיווג של אירוע חשיפה כ"חשיפה חריפה" הוא לא תמיד ברור. דוגמאות מובהקות של חשיפה חריפה הם:
קל יותר לחקור את השפעתה של חשיפה חריפה מאשר את זו של חשיפה כרונית. בחשיפה חריפה הנזק הוא מיידי, ואילו כאשר מדובר בחשיפה כרונית קשה מאוד עד בלתי אפשרי לכמת במדויק את הנזק. זאת, משום שישנם גורמים מסרטנים נוספים אותם צריך לקחת בחשבון (אורח חיים וכולי). רמות קרינההקשר בין חשיפה לקרינה מייננת לבין סרטן מבוסס בעיקר על אוכלוסיות שנחשפו לרמות קרינה גבוהות, כגון השורדים של ההתקפה הגרעינית האמריקאית על יפן במלחמת העולם השנייה. תוצאות הוסקו גם מאנשים שנחשפו למנה גדולה של קרינה כתוצאה מאבחונים מטיפולים רפואיים. סוגי הסרטן שעלולים להופיע בעקבות חשיפה למנת קרינה גבוהה כוללים: לוקמיה (סרטן הדם), סרטן בלוטת התריס, סרטן השד, סרטן שלפוחית השתן, סרטן המעיים, סרטן הריאות, סרטן הוושט, סרטן השחלות וסרטן הקיבה. ממחקרים של מחלקת הבריאות ושירותי האנוש של ארצות הברית רומזים שייתכן קשר בין חשיפה לקרינה מייננת לבין סרטן הערמונית, סרטן הסינוסים, סרטן הלוע, סרטן בית הקול וסרטן הלבלב. הזמן שעובר בין החשיפה לקרינה המייננת לבין התפרצות (או גילוי) הסרטן נקרא "תקופת ההשהייה" (latency). כיום, אין אפשרות להבדיל בין מקרה בו הסרטן התפתח עקב חשיפה לקרינה מייננת, לבין מקרה בו הסרטן התפתח מסיבות אחרות: בצורה טבעית (שמקורו אינו ידוע) או עקב חשיפה לגורמים מסרטנים כימיים או אחרים (כגון טבק או אלכוהול). כדי לשערך את ההשפעה של חשיפה למנות קרינה נמוכות על בריאות הציבור, חוקרים נעזרים במודלים שונים שממדלים הקשר סיבתי בין קרינה לסרטן. בשניים מהם (הורמזיס וליניארי ללא ערך סף) דנו לעיל. מאחר שישנם מספר מודלים, ישנן גם תחזיות שונות לרמת הסכנה. מחקרים על עובדים שנחשפו בצורה כרונית לרמת קרינה נמוכה (מעל רמת הקרע הטבעית) לא איפשרו הסקת מסקנה חד-משמעית לגבי הסיכוי לחלות בסרטן או לגבי השפעה על הצאצאים. למרות אי הוודאות, מחקרים אלו רומזים שאנשים אלו נמצאים בסיכון מוגבר לחלות בלוקמיה ובסוגי סרטן אחרים.[11] דוגמאות להשפעות של מנות קרינה שונותהסימפטומים של חשיפת קרינה חריפה מתוארים בערך הרעלת קרינה. הרמות המדויקות משתנות, אבל ככלל, מחלת קרינה קלה מתחילה במנה של בערך 0.5-1 סיוורט. הטבלה הבאה מציגה את השפעתן של מנות חשיפה שונות לצורך השוואה:
ניטור ובקרה של חשיפה לקרינה מייננתקרינה מיננת נמצאת כל הזמן בסביבה שלנו ובתוך הגוף שלנו. החושים שלנו לא מסוגלים לחוש קרינה מייננת, אבל מכשירים מלאכותיים מסוגלים למדוד אפילו רמות נמוכות מאוד של קרינה, בין ממקורות טבעיים ובין ממקורות מלאכותיים. דוסומטרים מודדים את כמות החשיפה הכוללת לאורך זמן. דוסומטר מסוג תא יינון נראה כמו עט כתיבה והוא נועד להיות מחובר לבגדי העובד. דוסימרטים אלו נטענים במטען חשמל על ידי קרינה מייננת; כמות המטען שצריכים להכניס כדי לנטרלו מעיד על מנת החשיפה שהתא עבר. כמו שהשם מעיד, דוסומטר-סרט כולל בתוכו סרט צילום. כמו שסרט צילום רגיל של מצלמה עובר שינוי כשהוא נחשף לאור נראה, סרט של דוסומטר שנחשף לקרינה מיננת עובר שינוי, וניתן לפתח את הסרט ולכמת את רמת החשיפה. שלא כמו דוסימטרי מסוג תא יינון, הסרט נזרק אחרי שימוש אחד בלבד וצריכים לטעון בדוסומטר סרט חדש. שיטת הדוסומטריה הנפוצה ביותר היום היא חיישנים מסוג TLD (ראשי תיבות של Thermo Luminescence Dosimeter). חיישנים אלו פולטים אור-נראה אחרי חימום אם הם נחשפו לקרינה מייננת. אפשר להשתמש בחיישנים מסוג זה הרבה פעמים. מוני גייגר סינטלטור מודדים קרינה מייננת בצורה ישירה (ולא רק חשיפה מצטברת לאורך זמן). יש ארבע דרכים להקטין את מנת החשיפה מקרינה מיננת:
בעת מלחמה גרעינית, שימוש בחדר מוגן-קרינה עשויה להקטין את חשיפת האנשים השוהים בתוכו לאלפית המנה לעומת אנשים השוהים מחוץ לחדר. שיטה נוספת להקטין את התמותה בזמן מלחמה גרעינית היא לעיסת טבליות אשלטן-יוד (KI); חומר זה אמור לחסום את ספיגת היוד הרדיואקטיבי בבלוטת התריס. יחידות של מנות קרינהפיזיקאים שעוסקים בתחום פיזיקה רפואית משתמשים בכמה גדלים שונים כדי לתאר מנות קרינה - רנטגן, רד, רם, סייוורט, וגריי. (כל אחד בא גם עם הקידומות מילי (1/1,000) ומיקרו (1/1,000,000), קילו (1000) ומגה (1,000,000).) ניתן לתרגם מנת קרינה מגודל לגודל, אבל לפעמים פקטור התרגום תלוי בחומר שהקרינה עוברת בו. חלק מן היחידות מתארות אותו תהליך פיזיקלי, וההבדל הוא רק הסקאלה הבסיסית (כמו ההבדל בין מייל לקילומטר) אבל חלק מן היחידות מתארות תהליכים פיזיקליים שונים (כמו ההבדל בין מסה למשקל). להלן סקירה קצרה של היחידות. חשיפה (רנטגן)חשיפה (exposure) היא מדידה ישירה של כמות היינון שהייתה נגרמת על ידי הקרן אילו היא הייתה עוברת באוויר. היחידות נקראים 'רנטגן'. רנטגן אחד היא עוצמת הקרינה שתגרום ליצירת כמות מטען חשמלי השווה ליחידה אלקטרוסטטית אחת (esu) בסנטימטר מעוקב (cc) של אוויר יבש בתנאים תקניים. רנטגן אחד גורם ליצירת מטען של קולון לק"ג אוויר. מנה (גריי/רד)לעומת החשיפה (ראו לעיל) שמודדת מטען חשמלי באוויר, המנה (dose) היא גודל כללי המשמש להערכת כמות האנרגיה הנספגת בחומר כלשהו כתוצאה מפגיעת הקרינה בחומר. יחידת המנה היא הגריי (gray) ובקיצור Gy. גריי אחד אקוויוולנטי לספיגת אנרגיה של ג'אול אחד בק"ג חומר. בעבר הייתה מקובלת יחידה אחרת למדידת המנה, היא הרד (rad). יחידה זו אקוויוולנטית לספיגת אנרגיה של 100 ארג בגרם חומר. גריי אחד שווה ל-100 רד. קרמה (דג'אול לק"ג)משיקולים של נוחיות החישוב והמדידה משתמשים לפעמים להערכת עוצמת קרינה במונחים של גודל שנקרא קרמה (kerma) - שהם ראשי התיבות של kinetic energy released in matter - אנרגיה קינטית המשוחררת החוצה. זהו גודל המודד את האנרגיה הקינטית ההתחלתית של החלקיקים הטעונים הנוצרים בתהליך היינון, ביחידת מסה בתווך מסוים כתוצאה מאינטראקציה של הקרינה עם אטומי התווך. הקרמה נמדדת ביחידות J/kg כמו המנה. ההבדל בין הקרמה והמנה הוא שהקרמה מתייחסת לאנרגיה הנמסרת בנקודה הנידונה ואילו המנה מתארת את האנרגיה הנבלעת באותה נקודה. חלק (בדרך כלל קטן) מן האנרגיה הנמסרת אינה נבלעת במקום אלא עוברת הלאה בצורת קרינת בלימה. בטווח האנרגיות בין 10 KeV עד 3 MeV ההבדל בין קרמה למנה באוויר פחות מאחוז אחד. מנה שקולה (סייורט/רם)הנזק הביולוגי המאוחר שנגרם על ידי חשיפת הגוף לקרינה מייננת תלוי בסוג הקרינה. נזק זה גדול יותר כשהקרינה גורמת ליוניזציה צפופה ברקמה החשופה. צפיפות היוניזציה נמדדת על ידי גודל הקרוי LET (ראשי תיבות של: linear energy transfer). קרינת אלפא וקרינת נייטרונים הן בעלות LET גבוה במים (או רקמה אנושית). קרינת ביתא וגמא הן בעלות LET נמוך. הערכת מנת הקרינה בהקשר לנזק הביולוגי המאוחר נעשית בעזרת גודל הנקרא המנה השקולה או המנה האקוויוולנטית (equivalent dose). יחידת המנה האקוויוולנטית היא הסיוורט (sievert) ובקיצור Sv (היחידה קרויה על שם המדען רולף סיוורט). בעבר השתמשו ביחידה שנקראת רם. סיוורט אחד שווה ל-100 רם, ולכן מיליסיורט אחד הוא 100 מילירם. מנה אפקטיבית (סייורט/רם)ההערכה הכמותית של הנזק הביולוגי המאוחר הנגרם על ידי חשיפת איברים אחדים של הגוף למנות שונות של קרינה נעשית באמצעות גודל הקרוי מנת הקרינה האפקטיבית (effective dose) הנמדדת גם כן ביחידות של סיוורט. ההבדל בין המנה האקוויוולנטית למנה אפקטיבית הוא שהמנה האפקטיבית לוקחת בחשבון את הרגישות המוגברת של איברים מסוימים לנזקי קרינה (כמו איברי הרבייה). מנת קרינה של בננהחומרים רדיואקטיביים מצויים באופן טבעי באדמה, במים ובצמחיה. מקצתם נספגים בגוף מהאוכל, למשל, בננה מכילה אשלגן, חלק מן האטומים שלו הם איזוטופים רדיואקטיביים והמים, או מהאוויר במקרה של הגז רדון, מבלי לגרום נזקים משמעותיים. לשם השוואה בין חומרים טבעיים אלו, הומצאה המידה מנת קרינה של בננה, אך היא אינה משמשת את עולם המדע, אלא יותר כהצגה פופולרית של קרינה. סוגים של השפעות מקרינה מייננתההשפעות הביולוגיות של חשיפה לקרינה מייננת מתחלקות לשני סוגים עיקריים:
תקנים ישראליים ובינלאומיים לגבולות מנהגבולות המנה (dose limits) באים למנוע כליל את השפעת הדטרמניסטיות של קרינה מייננת ולצמצם את ההשפעות הסטוכסטיות במידת האפשר. גבולות המנה מתייחסים למנת הקרינה המצטברת בשנה אחת. הגבולות נקבעו כך שהחשיפה לא תגרום לאדם תוספת סיכון סטוכסטי ש-ICRP[13] (המועצה הבינלאומית להגנה רדיולוגית) מגדירה כסיכון בלתי נסבל או בלתי קביל (unacceptable). כבסיס לסיכון סביר (tolerable) קבעה הוועדה תוספת סיכון לתמותה בסדר גודל של 0.001 לשנה (דהיינו מקרה מוות נוסף אחד ל-1000 עובדים לשנה). בהתאם לכך הוועדה קבעה את הטבלה הבאה. הערכים גובשו על בסיס מקדמי הסיכון לתחלואה ותמותה מסרטן והסיכוי לגרימת פגמים גנטיים. גבול המנה השנתית[14] לפי ICRP-60 (ביחידות של מיליסיורט לשנה):
התקן הבינלאומי להגנה מקרינה שפורסם ב-1996 אימץ את גבולות החשיפה שפורטו למעלה. תקנות הבטיחות בעבודה בישראל טרם הותאמו לתקן הבינלאומי להגנה מקרינה וגבולות המנה הנהוגים בישראל, לפי התקנות הבטיחות בעבודה 1992 (9) תואמים את הערכים של התקן הבינלאומי הישן משנת 1977, כדלהלן: גבולות מנה שנתיים לעובדי קרינה הנהוגים עדיין בישראל לפי המלצת ICRP משנת 1977:
ראו גםלקריאה נוספת
קישורים חיצוניים
הערות שוליים
|