July 1916 lunar eclipse
A partial lunar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 15, 1916,[1] with an umbral magnitude of 0.7944. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A partial lunar eclipse occurs when one part of the Moon is in the Earth's umbra, while the other part is in the Earth's penumbra. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. Occurring only about 3.5 hours after perigee (on July 15, 1916, at 1:15 UTC), the Moon's apparent diameter was larger.[2] ObservationsThe Ross Sea party was a component of Sir Ernest Shackleton's Imperial Trans-Antarctic Expedition of 1914–17. Five men were stranded not far away from Cape Evans. There was sea ice between them and the relative safety of the hut on Cape Evans. On May 8 two of the men, Aeneas Mackintosh and Victor Hayward, decided to make an attempt to reach the hut. Soon after they set out, a blizzard hit. When the weather cleared up, the remaining men tried to look for them, but realized that the ice was far too thin to cross, and that their friends had been lost. Now they knew that they should wait for a thicker ice and for the full moon to attempt the crossing. Having the full moon was essential, because during polar night the moon is the only source of natural light other than the extremely dim light of the stars. The weather did not cooperate during the full moon of June, but on July 15, everything seemed to be just right: calm weather, thick ice, clear skies and a full moon. The men started their journey in the morning. When the moon rose, however, the men were surprised to find it was about to be eclipsed[citation needed]. Ernest Wild wrote later:
Although the eclipse continued for a few hours, the men were fortunate because it was only a partial eclipse. They reached Cape Evans later on the same day.[3] VisibilityThe eclipse was completely visible over eastern North America, South America, and Antarctica, seen rising over western North America and the central Pacific Ocean and setting over Africa and western Europe.[4] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[5]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
Related eclipsesEclipses in 1916
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 118
Inex
Triad
Lunar eclipses of 1915-1918
Saros 118
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[6] This lunar eclipse is related to two annular solar eclipses of Solar Saros 125.
See alsoNotes
References
External links
|