Share to:

 

May 1910 lunar eclipse

May 1910 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateMay 24, 1910
Gamma−0.3976
Magnitude1.0950
Saros cycle129 (32 of 71)
Totality49 minutes, 30 seconds
Partiality215 minutes, 21 seconds
Penumbral360 minutes, 20 seconds
Contacts (UTC)
P12:33:54
U13:46:25
U25:09:21
Greatest5:34:05
U35:58:50
U47:21:46
P48:34:14
← November 1909
November 1910 →

A total lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, May 24, 1910,[1] with an umbral magnitude of 1.0950. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.4 days after apogee (on May 21, 1910, at 18:30 UTC), the Moon's apparent diameter was smaller.[2]

This lunar eclipse was the third of a tetrad, with four total lunar eclipses in series, the others being on June 4, 1909; November 27, 1909; and November 17, 1910.

Visibility

The eclipse was completely visible over much of North America, South America, and Antarctica, seen rising over northwestern North America, eastern Australia, and the central Pacific Ocean and setting over Africa and Europe.[3]

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

May 24, 1910 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.16249
Umbral Magnitude 1.09503
Gamma −0.39758
Sun Right Ascension 04h00m18.2s
Sun Declination +20°36'19.8"
Sun Semi-Diameter 15'47.5"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 15h59m50.9s
Moon Declination -20°56'56.9"
Moon Semi-Diameter 14'47.6"
Moon Equatorial Horizontal Parallax 0°54'17.6"
ΔT 10.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May 1910
May 9
Ascending node (new moon)
May 24
Descending node (full moon)
Total solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129

Eclipses in 1910

Metonic

Tzolkinex

Half-Saros

Tritos

Lunar Saros 129

Inex

Triad

Lunar eclipses of 1908–1911

Saros 129

Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The longest occurrence of this series was on July 16, 2000 when totality lasted 106 minutes and 24.6 seconds.

Greatest First

The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes.
Penumbral Partial Total Central
1351 Jun 10 1513 Sep 15 1910 May 24 1946 Jun 14
Last
Central Total Partial Penumbral
2036 Aug 7 2090 Sep 8 2469 Apr 26 2613 Jul 24
1901–2100
1910 May 24 1928 Jun 3 1946 Jun 14
1964 Jun 25 1982 Jul 6 2000 Jul 16
2018 Jul 27 2036 Aug 7 2054 Aug 18
2072 Aug 28 2090 Sep 8

It last occurred on May 11, 1892 and will next occur on June 3, 1928.

This is the 32nd member of Lunar Saros 129, and the first total eclipse. The next event is the June 1928 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Inex series

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 35.

Series events from 1500–2500
Descending node Ascending node Descending node Ascending node
Saros Date
Chart
Saros Date
Chart
Saros Date
Chart
Saros Date
Chart
115 1505 Feb 18
116 1534 Jan 30
117 1563 Jan 9 118 1591 Dec 30
119 1620 Dec 9 120 1649 Nov 19 121 1678 Oct 29 122 1707 Oct 11
123 1736 Sep 20 124 1765 Aug 30 125 1794 Aug 11 126 1823 Jul 23
127 1852 Jul 1 128 1881 Jun 12 129 1910 May 24
130 1939 May 3
131 1968 Apr 13
132 1997 Mar 24
133 2026 Mar 3
134 2055 Feb 11
135 2084 Jan 22
136 2113 Jan 2 137 2141 Dec 13 138 2170 Nov 23
139 2199 Nov 2 140 2228 Oct 14 141 2257 Sep 24 142 2286 Sep 3
143 2315 Aug 16 144 2344 Jul 26 145 2373 Jul 5 146 2402 Jun 16
147 2431 May 27 148 2460 May 5
149 2489 Apr 16

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[5] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.

May 18, 1901 May 29, 1919

See also

Notes

  1. ^ "May 23–24, 1910 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 16 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 16 December 2024.
  3. ^ "Total Lunar Eclipse of 1910 May 10" (PDF). NASA. Retrieved 16 December 2024.
  4. ^ "Total Lunar Eclipse of 1910 May 24". EclipseWise.com. Retrieved 16 December 2024.
  5. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Kembali kehalaman sebelumnya