May 1910 lunar eclipse
A total lunar eclipse occurred at the Moon’s descending node of orbit on Tuesday, May 24, 1910,[1] with an umbral magnitude of 1.0950. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 2.4 days after apogee (on May 21, 1910, at 18:30 UTC), the Moon's apparent diameter was smaller.[2] This lunar eclipse was the third of a tetrad, with four total lunar eclipses in series, the others being on June 4, 1909; November 27, 1909; and November 17, 1910. VisibilityThe eclipse was completely visible over much of North America, South America, and Antarctica, seen rising over northwestern North America, eastern Australia, and the central Pacific Ocean and setting over Africa and Europe.[3] Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipsesEclipses in 1910
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 129
Inex
Triad
Lunar eclipses of 1908–1911
Saros 129Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The longest occurrence of this series was on July 16, 2000 when totality lasted 106 minutes and 24.6 seconds.
It last occurred on May 11, 1892 and will next occur on June 3, 1928. This is the 32nd member of Lunar Saros 129, and the first total eclipse. The next event is the June 1928 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series. Inex seriesThe inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes. This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 35.
Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[5] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.
See alsoNotes
External links
|