July 2018 lunar eclipse
A total lunar eclipse occurred at the Moon’s descending node of orbit on Friday, July 27, 2018,[1] with an umbral magnitude of 1.6100. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 19 hours after apogee (on July 27, 2018, at 1:45 UTC), the Moon's apparent diameter was smaller.[2] The Moon passed through the center of Earth's shadow in what was the first central lunar eclipse since June 15, 2011. It was also the longest total lunar eclipse of the 21st century, but not the longest in the 3rd millennium.[3] Totality lasted one hour and 42.955 minutes,[4][5][6][7] a period "just short of the theoretical limit of a lunar eclipse (one hour and 46.605 minutes)".[8] The Moon remained at least partially in Earth's shadow for three hours 54.55 minutes.[8] The longest total lunar eclipse of the 3rd millennium will occur on May 12, 2264, lasting 106 minutes and 13.2 seconds, which will be the longest total lunar eclipse since 2000, and the longest one until 3107. The eclipse occurred when the Moon was near its maximum distance from Earth, which caused the Moon to appear smaller than normal (a phenomenon sometimes called a micromoon),[9][10] and to travel at its slowest speed in its orbit around Earth.[3] This lunar eclipse coincided with Mars being nearly as close as possible to Earth, a concurrence that happens once every 25,000 years.[6] BackgroundA lunar eclipse occurs when the Moon passes within Earth's umbra (shadow). As the eclipse begins, Earth's shadow first darkens the Moon slightly. Then, the Earth's shadow begins to cover part of the Moon, typically turning it a dark red-brown color (the color can vary based on atmospheric conditions). The Moon appears to be reddish because of Rayleigh scattering (the same effect that causes sunsets to appear reddish and the daytime sky to appear blue) and the refraction of that light by Earth's atmosphere into its umbra.[11] The Moon's brightness is exaggerated within the umbral shadow.[11] The southern portion of the Moon was closest to the center of the shadow, making it the darkest, and most red in appearance.[citation needed] VisibilityThe eclipse was completely visible over east Africa, southern Africa, south and central Asia, seen rising over South America, west Africa, and Europe, and setting over east Asia and Australia.[12][13]
Gallery
Eclipse detailsShown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[14]
Eclipse seasonThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
Related eclipsesEclipses in 2018
Metonic
Tzolkinex
Half-Saros
Tritos
Lunar Saros 129
Inex
Triad
Lunar eclipses of 2016–2020
Saros 129Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The longest occurrence of this series was on July 16, 2000 when totality lasted 106 minutes and 24.6 seconds.
It last occurred on July 16, 2000 and will next occur on August 7, 2036. This is the 38th member of Lunar Saros 129. The previous event was the July 2000 lunar eclipse. The next event is the August 2036 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series. Half-Saros cycleA lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[15] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.
See alsoNotes
External linksWikimedia Commons has media related to Lunar eclipse of 2018 July 27.
|