วิธีค่าเฉลี่ยสูงสุด
วิธีค่าเฉลี่ยสูงสุด (อังกฤษ: highest averages method) หรือ วิธีตัวหาร (divisor method) เป็นชื่อของวิธีการจัดสรรปันส่วนที่นั่งในสภานิติบัญญัติอย่างเป็นสัดส่วนซึ่งใช้ในระบบการลงคะแนนแบบบัญชีรายชื่อ วิธีนี้จะนำจำนวนคะแนนเสียงของแต่ละพรรคการเมืองไปผ่านการหารอย่างเป็นระบบด้วยตัวหารต่าง ๆ โดยจะได้ตารางผลหาร หรือ ค่าเฉลี่ย ซึ่งแบ่งเป็นแถวเรียงตามตัวหาร และสดมภ์เรียงตามพรรคการเมือง จำนวนที่นั่ง n ที่นั่งจะจัดสรรให้พรรคการเมืองที่มีจำนวน n สูงที่สุดในตาราง จากจำนวนที่นั่งที่มีทั้งหมด[1] วิธีทางเลือกอีกวิธีคือ วิธีเหลือเศษสูงสุด ซึ่งใช้โควตาที่นั่งขั้นต่ำ และมาคำนวณต่อในหลายวิธี วิธีโดนต์วิธีโดนต์ (D'Hondt method) ได้รับการนำมาใช้มากที่สุด โดยใช้ตัวหารเป็น 1, 2, 3, 4, เป็นต้น[2] ในระบบนี้จะทำให้พรรคการเมืองขนาดใหญ่ได้จำนวนที่นั่งมากกว่าสัดส่วนผู้แทนจำนวนหนึ่ง และทำให้รับรองได้ว่าพรรคที่มีคะแนนเสียงข้างมากนั้นจะได้ที่นั่งอย่างน้อยครึ่งสภา วิธีเว็บสเตอร์/แซ็งต์-ลากูว์วิธีเว็บสเตอร์/แซ็งต์-ลากูว์ (Webster/Sainte-Laguë method) ใช้การหารจำนวนคะแนนเสียงของแต่ละพรรคการเมืองด้วยเลขคี่ (1, 3, 5, 7 เป็นต้น) และในบางครั้งได้รับการพิจารณาว่ามีความเป็นสัดส่วนมากกว่าวิธีโดนต์ในด้านของการเปรียบเทียบระหว่างจำนวนสัดส่วนของคะแนนเสียงของพรรคการเมืองต่อคะแนนเสียงทั้งหมดและการจัดสรรจำนวนที่นั่ง แต่สามารถทำให้พรรคการเมืองขนาดใหญ่ที่ได้รับคะแนนเสียงข้างมากนั้นได้รับที่นั่งน้อยกว่าครึ่งหนึ่งของสภา ในระบบนี้ผู้ได้รับประโยชน์ส่วนใหญ่คือพรรคการเมืองขนาดเล็กมากกว่าพรรคใหญ่ และดังนั้นจึงทำให้มีจำนวนพรรคการเมืองมาก การใช้ตัวหารเป็นเลขทศนิยม เช่น 0.5, 1.5, 2.5, 3.5 ทำให้ได้ผลลัพธ์เดียวกัน วิธีเว็บสเตอร์/แซ็งต์-ลากูว์ในบางครั้งปรับแต่งใช้โดยการปรับตัวหารแรกเป็น 1.4 เป็นต้น เพื่อป้องกันไม่ให้พรรคการเมืองขนาดเล็กมากได้ที่นั่งแรกไปอย่างง่ายดายเกินไป อิมเปรีอาลีอีกหนึ่งวิธีใช้ค่าเฉลี่ยสูงสุดเรียกว่า "อิมเปรีอาลี" (Imperiali) ซึ่งไม่ใช่สิ่งเดียวกับโควตาอิมเปรีอาลี (เป็นวิธีหนึ่งในแบบวิธีเหลือเศษสูงสุด) โดยมีตัวหารเป็น 1, 1.5, 2, 2.5, 3, 3.5 เป็นต้น โดยออกแบบมาเพื่อลดความได้เปรียบของพรรคการเมืองเล็ก ซึ่งคล้ายกับวิธี "ตัดเสียง" และใช้ในการเลือกตั้งเทศบาลในเบลเยียมเท่านั้น วิธีนี้ (แตกต่างจากวิธีอื่น ๆ ในบทควาามนี้) ไม่ได้ทำให้ผลลัพธ์ที่ได้เป็นสัดส่วนอย่างแท้จริง วิธีฮันติงตัน-ฮิลล์วิธีฮันติงตัน-ฮิลล์ (Huntington-Hill method) ใช้ตัวหารจากผลลัพธ์ ซึ่งจะนำมาใช้ได้ถ้าทุกพรรคการเมืองได้รับการรับรองว่าจะได้รับ 1 ที่นั่งขั้นต่ำ โดยใช้การตัดพรรคการเมืองที่ไม่ได้คะแนนเสียงถึงคะแนนขั้นต่ำ วิธีนี้ใช้ในการแบ่งสัดส่วนที่นั่งในสภาผู้แทนราษฎรสหรัฐ วิธีเดนมาร์กวิธีเดนมาร์ก (Danish method) ซึ่งใช้ในการเลือกตั้งของเดนมาร์กในการจัดสรรที่นั่งชดเชยในระดับเขตเลือกตั้งของจังหวัดให้เหมาะสมกับเขตเลือกตั้งย่อยแบบมีผู้แทนหลายคน โดยใช้การหารจำนวนคะแนนเสียงของแต่ละพรรคการเมืองในเขตเลือกตั้งที่มีผู้แทนมากกว่าหนึ่งคนด้วยตัวหารแบบเพิ่มทีละ 3 (1, 4, 7, 10 เป็นต้น) หรืออีกวิธีที่ได้ผลลัพธ์เดียวกันคือ หารด้วย 0.33, 1.33, 2.33, 3.33 เป็นต้น ระบบนี้ตั้งใจแบ่งที่นั่งอย่างเท่าเทียมกันมากกว่าเป็นสัดส่วน[3] วิธีของแอดัมส์วิธีของแอดัมส์ (Adam's method) ซึ่งได้รับการออกแบบโดยจอห์น ควินซี แอดัมส์ ในการจัดสรรปันส่วนที่นั่งให้กับสภาผู้แทนราษฎรสหรัฐ[4] เนื่องจากรู้สึกว่าวิธีของเจฟเฟอร์สัน (Jefferson's method) ในการจัดสรรปันส่วนที่นั่งนั้นทำให้รัฐขนาดเล็กได้จำนวนที่นั่งน้อยเกินไป วิธีนี้สามารถเรียกได้ว่าเป็นวิธีตรงข้ามกับวิธีของเจฟเฟอร์สัน โดยให้จำนวนที่นั่งต่อพรรคการเมืองที่จำนวนคะแนนเสียงต่อที่นั่งมากกว่าก่อนที่จะเพิ่มที่นั่ง วิธีของแอดัมส์ใช้ เป็นตัวหาร[5] เช่นเดียวกับวิธีฮันติงตัน-ฮิลล์ ซึ่งจะได้ผลลัพธ์เป็น 0 สำหรับที่นั่งที่แรกที่จะให้แต่ละพรรคการเมือง ซึ่งทำให้ได้ค่าเฉลี่ยเป็น ∞ (อนันต์) ซึ่งสามารถฝืนกฎโควตาขั้นต่ำได้[6] ตามตัวอย่างต่อไปนี้ ในกรณีที่ไม่มีการกำหนดคะแนนเสียงขั้นต่ำ ทุกพรรคการเมืองที่ได้รับคะแนนเสียงอย่างน้อยหนึ่งคะแนนจะได้รับหนึ่งที่นั่งเช่นกัน ยกเว้นในกรณีที่มีจำนวนพรรคการเมืองมากกว่าจำนวนที่นั่ง คุณสมบัตินี้จึงถือเป็นที่น่าพอใจ เช่น ในการจัดสรรที่นั่งในเขตเลือกตั้งต่าง ๆ เป็นต้น ในขณะที่จำนวนที่นั่งเท่ากับจำนวนเขตเลือกตั้ง ทุกเขตเลือกตั้งถือว่ามีผู้แทน ในการเลือกตั้งระบบสัดส่วนแบบบัญชีรายชื่อนั้นอาจส่งผลให้พรรคการเมืองขนาดที่เล็กมากได้ที่นั่งไปด้วย นอกจากนี้การฝืนกฎโควตาในวิธีของแอดัมส์นี้ถือเป็นเรื่องปกติ[7] ซึ่งปัญหาเหล่านี้สามารถแก้ไขได้โดยการใช้คะแนนเสียงขั้นต่ำ (electoral threshold) ระบบโควตานอกเหนือจากวิธีต่าง ๆ ที่กล่าวมาแล้วข้างต้น วิธีค่าเฉลี่ยสูงสุดสามารถนำมาใช้งานได้หลายวิธี ในการเลือกตั้งปกตินั้น จะเริ่มคำนวณโควตาซึ่งมาจากจำนวนคะแนนเสียงทั้งหมดของผู้ลงคะแนนหารด้วยจำนวนที่นั่งในสภาที่จะต้องจัดสรร (โควตาแฮร์) พรรคการเมืองต่าง ๆ นั้นจะได้รับการจัดสรรที่นั่งจากจำนวนโควตาที่ได้รับในแต่ละพรรคการเมืองโดยการหารจำนวนคะแนนเสียงที่ได้รับด้วยโควตา ในกรณีที่พรรคการเมืองได้เศษของโควตาจะต้องปัดเศษขึ้นหรือลงให้เป็นจำนวนเต็ม การปัดเศษลงนั้นเทียบเท่ากับวิธีโดนต์ ในขณะที่ปัดขึ้นนั้นเทียบเท่ากับวิธีแซ็งต์-ลาก อย่างไรก็ตาม จากการปัดเศษนี้อาจไม่ได้ทำให้ที่นั่งที่เหลือทั้งหมดถูกจัดสรรจนครบ ในกรณีนี้อาจจะต้องมีการปรับโควตาขึ้นหรือลงจนกว่าจำนวนที่นั่งทั้งหมดที่เหลือหลังจากการปัดเศษนั้นได้รับการจัดสรร ตารางที่ใช้ในวิธีโดนต์หรือแซ็งต์-ลากนั้นจะเห็นว่าเป็นการคำนวณโควตาสูงสุดที่จะสามารถกระทำได้เพื่อจะจัดสรรที่นั่งให้ครบ ตัวอย่างเช่น ผลหารที่ทำให้ชนะที่นั่งแรกในวิธีโดนต์นั้นเป็นโควตาสูงสุดที่จะได้รับ 1 ที่นั่ง (หลังจากการปัดเศษลงแล้ว) ผลหารในรอบที่สองนั้นคือตัวหารที่สูงสุดเพื่อที่จะได้ 2 ที่นั่ง โดยทำซ้ำจนครบ การเปรียบเทียบระหว่างวิธีโดนต์ วิธีแซ็งต์-ลากูว์ วิธีฮันติงตัน-ฮิลล์ และวิธีของแอดัมส์วิธีโดนต์ วิธีแซ็งต์-ลากูว์ และวิธีฮันติงตัน-ฮิลล์ ทำให้แต่ละพรรคการเมืองใช้การวางแผนยุทธศาสตร์ของตนในการเพิ่มที่นั่งให้ได้มากที่สุด วิธีโดนต์และวิธีฮันติงตัน-ฮิลล์ทำให้ได้เปรียบในกรณีรวมพรรคการเมือง ในขณะที่วิธีแซ็งต์-ลากูว์นั้นจะดีกว่าหากเป็นการแตกพรรคเป็นพรรคย่อย (วิธีแซ็งต์-ลากูว์แบบปรับเปลี่ยนจะลดข้อได้เปรียบนี้) ตัวอย่างในตัวอย่างดังต่อไปนี้ ในวิธีโดนต์และวิธีฮันติงตัน-ฮิลล์ หากพรรคเหลืองและเขียวรวมกันจะสามารถเพิ่มได้ถึงหนี่งที่นั่ง ในขณะที่ในวิธีแซ็งต์-ลากูว์นั้น พรรคเหลืองจะได้ที่นั่งมากกว่าหากแตกเป็นหกพรรคการเมืองซึ่งแต่ละพรรคได้รับประมาณ 7,833 คะแนนเสียง จำนวนคะแนนเสียงทั้งหมด 100,000 คะแนน และมี 10 ที่นั่ง วิธีฮันติงตัน-ฮิลล์กำหนดขั้นต่ำที่ 10,000 คะแนน ซึ่งเท่ากับ 1/10 ของคะแนนเสียงทั้งหมด
อ้างอิง
Information related to วิธีค่าเฉลี่ยสูงสุด |